
GHS: A Performance System of Grid Computing

Xian-He Sun, Ming Wu
Department of Computer Science

Illinois Institute of Technology

Chicago, Illinois 60616, USA

{sun, wuming}@iit.edu

Abstract
Conventional performance evaluation mechanisms

focus on dedicated distributed systems. Grid computing

infrastructure, on another hand, is a shared collaborative

environment constructed on autonomic virtual
organizations. The non-dedicated characteristic of Grid

computing prevents the leverage of conventional task

scheduling systems. In this study, we present the design
and development of the Grid Harvest Service (GHS)

performance evaluation and task scheduling system for

solving large-scale applications in a shared network
environment. GHS combines stochastic models and

artificial intelligence learning mechanisms with task
scheduling algorithms. It considers both computing and

network contention and supports scheduling for single

task, parallel processing, and meta-tasks. Experimental
results show that GHS provides a satisfactory solution for

performance prediction and task scheduling and has a

real potential.

1. Introduction
With the advance of Internet, many scientists turned

to construct large geographically distributed systems in

recent years. The successes of distributed systems such as

Condor, NetSolve, Globus, and Nimrod inspire and

facilitate the formation of national scale distributed

environments, Grid computing [FoKe04]. While much

progress has been made in standardization of protocols

and interface to facility coordination, the main challenge

of enterprise network computing remains the same:

resource management and task scheduling. There is a big

gap between the potential peak performance and the

delivered performance in Grid computing.

The conventional parallel processing scheduling

methods cannot apply directly to a Grid environment

where computing resources are autonomic shared. The

key to Grid task scheduling is to understand the usage

pattern and predict the availability of computing and

communication resources, and to find their influence on

the application performance. Some latest Grid tools, such

as Network Weather Service (NWS) [WoSH99], have

been developed to meet the need. However, these tools

are for short-term resource availability (generally in tens

of seconds). Another solution is adapting resource

reservation to reduce the complexity of resource

management in a shared environment. This approach

requires resource owners to have good planning on their

own tasks and suffers in system utilization. This approach

is useful for high priority tasks or to show the potential of

Grid computing, it but has difficulties to be employed in a

general enterprise environment. Also, resources

reservation will be more effective if it is based on

resource availability prediction. Supported by the NSF

NGS program, we have been developing a long-term,

application-level performance prediction and task

scheduling system, the Grid Harvest Service (GHS)

system, for Grid computing. The “long-term” signifies

that the system is designed for large applications that need

hours of computations and is in contrast to the current

Grid performance systems such as NWS. By “application-

level” we mean that the goal is to reduce the run-time of

user applications and is in contrast to resource availability

prediction. GHS addresses the performance issues of

computation and communication. It is designed to

integrate novel stochastic and analytical modeling with

newly developed scheduling and rescheduling

methodology to utilize the performance, enhance Quality

of Service (QoS), reliability, and trust of Grid Computing.

2. Grid Harvest Service
A series of technical challenges arise in Grid

computing due to resource availability and heterogeneity.

This includes evaluating resource availability on

application performance, partition and schedule a parallel

application accordingly, and the support of dynamic

scheduling. The Grid Harvest Service system comprises

of five primary subsystems: performance evaluation,

performance measurement, task allocation, task

scheduling, and execution management. Coordinately,

they provide appropriate services to harvest Grid

computing.

2.1. Performance evaluation
The most challenging technical hurdle of task

scheduling in shared environments is to estimate the

resource availability and to find its influence on the

application performance. Analytical modeling in general

has limited success in capturing the effect of “sharing” of

non-dedicated resources. Nonetheless probability and

stochastic modeling are often either too simplified or

cannot reach a meaningful solution for a given

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

engineering application. Existing models do not match the

complexity of the Grid.

Computation modeling. We have developed a

model for non-dedicated computing [GoSW02]. It was

derived from a combination of rigorous mathematical

analysis and intensive simulation to make it generic and

practically useful. The model considers the heterogeneous

machine utilization and computing capacity,

heterogeneous job arrival rate as well as heterogeneous

service distributions. The effects of machine utilization,

computing power, local job service and task allocation on

the completion time of remote task are individually

identified.

We refer the application under scheduling the remote

task and the other competing local processes the local

jobs. As observed and reported by researchers at

Wisconsin-Madison, Berkeley, Maryland, et al, the arrival

of local jobs in machine usage patterns follows a Poisson

distribution with , the service time of local jobs follows

a general distribution with mean /1 and standard

deviation . The cumulative distribution function of the

remote task completion time is derived as:

otherwise

wtifSwtSUee
tT

ww

,0

/),0|/)(Pr()1(
)Pr(

// (1)

where / is the machine utilization, is the

coefficient of variation of service, is the computing

capacity, and w is the workload of the remote task. The

first term on the right-side of equation (1) is the

performance without interruption. The second term,

),0|/)(Pr()1(/ SwtSUe w is the performance with

the interruptions. Special efforts were made to use

intensive simulations to find the distribution of the second

term so that equation (1) can be used in actual

performance predication. In the case of a parallel

application,)Pr()Pr(tTtT k
is used to calculate the

cumulative distribution function of the application

completion time. Initial experimental results confirm the

theoretical finding and show this model is practical and

works well.

Communication modeling. Modeling of end-to-end

network performance is essential for estimating the

communication cost of message transfer between parallel

processes and data transfer among dependent tasks.

Queuing theory has been widely applied in the analysis of

network performance based on the assumption of Poisson

job arrival with exponential service time. However, this

assumption is against the observation of real-world

network traffic, which presents self-similar properties.

Moreover, the end-to-end network path between two

remote nodes may dynamically change to adapt the

variation of network traffic. These characteristics make

network performance modeling extremely challenging.

Existing models do not capture the complicated short and

long-range temporal dependence characteristic of wide-

area network traffic.

We have applied ANN (Artificial Neural Network)

techniques to model network traffic [EsSW05]. The

strengths of ANN are its outstanding learning abilities,

robustness to noise, and need of little prior knowledge. By

online learning, ANN model can take into account the

changes in the environmental conditions and adapt itself

to the changes. Our ANN model predicts network

performance in terms of available bandwidth and latency,

and consists of five basic steps: collecting network traffic

data; setting the right bin size and prediction step;

preparing input parameters for neural network training;

choosing appropriate ANN parameters such as learning

rate, epoch number, and layer structure; and verification

of established ANN model. A challenge in the

construction of neural network model is the tradeoff

between prediction accuracy and cost. After exhaustively

examining all combinations of possible input parameters

derived from the real-world network traffic trace files

provided by WAND, ITA, and MOAT [EsSW05], we

have identified the following parameters as most useful

information for bandwidth prediction: timestamp, average

packet rate, average bit rate, and their past information.

To further improve the prediction accuracy, we examine

the network traffic composition in the trace files. We find

the network traffic in trace file, which is usually

composed of different types of application traffic like

TCP, UDP, ICMP and others. The application traffics

statistics indicate that each type of traffic data presents a

different traffic pattern. Instead of training one neural

network to learn different patterns, we can construct an

individual neural network model for each of them and

then combine the individual prediction results into the

overall traffic prediction.

2.2. Task allocation
Similar to parallel computing, Grid computing

generally involves three steps: task allocation, task

scheduling, and task execution. Task allocation decides

how to partition an application into subtasks and then task

scheduling maps them to a chosen set of resources for

optimal performance. Workload balance approach is

widely used in parallel computing. Conventional parallel

computing tools cannot directly be applied to the Grid due

to its heterogeneous and dynamic resource availability

and capacity. A mean-time task partition algorithm is thus

developed in GHS to distribute the workload of a parallel

program to each resource so that the difference of the

mean of expected execution times of the subtasks is

minimal. A min-min algorithm is implemented to cluster

subtasks of a meta-task and map each set of subtasks to a

resource based on the prediction of the execution time of

each set. The basic idea of these two algorithms is

execution time balance, in contrast of the conventional

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

workload balance approach. A detailed description of task

partition with respects of CPU, memory, network

resource heterogeneity and resource sharing is given in

[WuSu04].

2.3. Task scheduling
The GHS task scheduling takes the prediction from

the performance evaluation subsystem. It supports

different scheduling scenarios according to the

application’s requirement. Scheduling algorithms are

proposed and tested for sequential task, parallel program,

and meta-task, respectively. A heuristic scheduling

algorithm is proposed to find a near optimal solution with

a reasonable cost based on our computing model

[SuWu03].

A challenge of task scheduling in Grid computing is

to handle different abnormal situations, such as abnormal

computing and I/O performance, system shut down, un-

trusted system behavior, failure of Globus software

package, and undermined security. To provide reliable

scheduling, we implement a trigger system that uses the

GHS performance measurement subsystem to collect

information and automatically trigger rescheduling

[DGSS04]. The trigger system is rule-based and can add

in new abnormal conditions. A task-rescheduling

algorithm and associated environment is developed

[WuSu04]. The subtasks on resources showing abnormal

performance are assigned to other appropriate resources

based on a re-estimation of the application completion

time. A variant of formula (1) is used to calculate the

cumulative distribution function of the application

execution time in this situation.

otherwise

wtiftT
tT

m

i

i

,0

,)Pr((
)Pr(

max

1

 (2)

where)0|/)(Pr()1()Pr('// ''

iiiii

ww

i SwttSUeetT iiiiii .

it denotes the execution time of subtasks on machine i by

so far and '

iw denotes the workload of subtasks on

machine i that haven’t been completed.

}max{ '

max ii wtw .

2.4. Execution Management
Execution management subsystem carries the task

partition, scheduling, and re-scheduling policies. It

consists of two parts: task management and execution

engine. The task management maintains the map of

application’s subtasks among resources and their running

status. The execution engine serves job submission,

monitoring, and task re-scheduling. It also cooperates

with the performance evaluation subsystem to identify

abnormalities. When either a subtask is finished or a

performance abnormality is identified, the execution

engine reports it to the task management component. In

the latter case, a task re-scheduling will be triggered and

task re-scheduling algorithms will be invoked to find

where and when the subtasks should be moved or

migrated. Funded by the NSF Middleware Initiative (NMI)

program, we have developed a process migration system,

named the High Performance Computing Mobility

(HPCM) [HPCM03, DuSC03], which supports run-time

process migration of native codes written in C or Fortran

in a heterogeneous Grid environment between different

virtual organizations. HPCM provides the infrastructure

for actual run-time dynamic scheduling and task

reallocation.

3. Software Architecture
The Grid Harvest Service system is designed based

on the novel prediction, partition, and scheduling

mechanisms discussed above.. Its software architecture is

depicted in Figure 1. Its major components include

performance measurement engines, system-level

predictors, an application-level predictor, a task allocator,

a task scheduler, execution engines, as well as a task

manager. The performance evaluation subsystem is

designed with an application-level predictor and system-

level predictors component that are distributed on each

resource. The execution management subsystem consists

of a task manager and an execution engines component.

The life cycle of a meta-task scheduling with GHS is

presented as follows to illustrate how each GHS

component collaborates to enable the running of

applications in shared environments.

1. A user uses a task editor to compose the meta-task he

wants to submit. He can select a group of machines for his

application running or leaving it to the task manager. The

task manager will collect the resource information and

decide which set of machines is appropriate.

2. The task manager sends a task scheduling request to

the task scheduler, which includes the application

information and resource information. Based on the

request, the task scheduler consults the system-level

predictor on correspondent resources to get the estimated

resource availability. The task scheduler then contacts the

task allocator and the application-level predictor to find an

optimal plan that satisfies the user’s requirement.

3. The task manager records the mapping information of

subtasks among resources returned by the task scheduler.

After that, the task manager sends subtasks and their input

and output files to the execution engines on correspondent

resources according to the map information through scp or

the GridFTP service.

4. After receiving the subtask allocation information, the

execution engine (EE) consults the local resource

management system to submit application’s subtasks. It

monitors the subtask running and maintains the status of

subtasks. When a subtask is completed, the execution

engine sends a message to update the application status in

the task manager.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

5. During the execution of subtasks, the performance

measurement engine (PME) monitors the resource status

and the execution engine collect the application running

information. The execution engine periodically compares

the observed resource behavior and the expected resource

behavior obtained through the system-level predictor

(SLP). If abnormal situations are detected, a rescheduling

request is sent to the task manager.

6. The task manager collects the latest status of tasks and

resources in the system and sends the information to the

task scheduler for task reallocation. Based on the

generated rescheduling plan, the HPCM is invoked to

move the application’s subtasks from abnormal resources

to appropriate machines.

Step 4 – Step 6 are repeated until the completion of a

Grid meta-task.

The above software architecture allows seamless

integration of GHS components with Grid services to

enable efficient performance evaluation and task

scheduling. The Grid Information Service can be used by

the task manager to locate potential available resources.

The Grid FTP service can be used to handle the transfer

of applications and their data files and the GRAM can be

used in execution engines to dispatch subtasks on

resources. Following OGSA, the task scheduler and the

application predictor can be represented as Grid services

so that they can serve other Grid Services, such as the

Grid-enabled Programming System (GEPS), Problem

Solving Environment (PSE), in a Grid runtime system.

4. Experimental results
We have partially implemented the GHS system as a

proof of concept. Initial experimental results, collected at

the Argonne and Oak Ridge national laboratories, as well

as at IIT, are very encouraging. They confirm the GHS

design principle and its potential. We have compared the

prediction error of GHS and NWS [WoSH99] and the

performance of GHS scheduling and AppLeS [BWCC03]

scheduling for long-term applications [SuWu03,

EsSW05]. We consider NWS and AppLeS, as they are the

best-used performance prediction and task scheduling

system, respectively, in current Grid computing practice.

Performance Evaluation. The Network Weather

Service [WoSH99] provides short-term system-level

performance prediction based on various simple

forecasting methods. As it claims, it is suitable for jobs of

five minutes time span or less. To evaluate the accuracy

of the prediction model, we define the prediction error as

|
Pr

|
tMeasuremen

tMeasuremenedictionperiod . Figure 2 shows an

experiment conducted on the 64-node Sun ComputeFarm,

named Sunwulf, at IIT. The application is a replication of

NAS Serial Benchmarks. The class type of these

benchmarks is “A” or “W”. The local job’s lifetime is

simulated with the observation of real-life processes

[SuWu03]. The three predictions are based on NWS

prediction in terms of 10 seconds (default set of NWS)

and 5 minutes, and prediction provided by GHS,

respectively. It shows that the prediction error based on

NWS remains very high while the prediction error based

on GHS decreases with the increase in application

workload. This comparison shows that the GHS approach

is fundamentally more appropriate for long-term

applications.

Figure 3 (a) gives the expectation and variance of the

prediction error on the parallel program completion time

with different task demands (from 4 to 256 hours

sequential processing time) on 32 nodes of the Sunwulf.

Each node is simulated with different usage patterns. The

expectation and variance of the prediction error get

smaller with the increase in job length. We also evaluate

the prediction model on actual Grid environments. Figure

3 (b) shows the prediction error of a remote parallel task

completion time on Pitcairn, a productive Grid node at

Argonne National Laboratory. Pitcairn is a

Figure 2. Mean of the prediction error of NWS
and GHS

0

50

100

150

1 2 4 8 16 24

remote task demand

(hours)

NWS (10 seconds)

NWS (5 minutes)

GHS

Figure 1. Software structure of
Grid Harvest System

Task Scheduler

Application-
level Predictor

Grid Information
Service

Application Layer

GEPS

Collective Layer

Task Editor

Task Allocator

Task Manager

Fabric Layer

GRAM
Resource Layer

Internet GSI Connectivity Layer

GridFTP

PME

RTS

Sensor

SLP
Sensor

Senso
EE PME

RTS

Sensor

SLP
Sensor

Senso
EE

PSE

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

multiprocessor with 8 250MHz UltrasparcII processors

and 1GB of shared memory. It is a Grid node shared by

many users. The result again shows that the expectation

and variance of the prediction error get smaller as the

demand of remote task increases.

To verify the efficiency of the proposed Neural

Network based prediction approach for network

performance estimation, comparison is made with that of

NWS. Figure 4 shows the performance comparisons of

ANN and NWS for varying bin sizes for one-step

prediction of AUCKLAND IV and II traces [NLAN04].

From the graph we can see that the prediction results of

ANN supersede those of NWS for each bin size,

illustrating the performance of the ANN mechanism is

noticeably better than that of NWS. Compared with the

prediction error of NWS, the performance gain of ANN

prediction is 26.1% for AUCKLAND IV and 34.4% for

AUCKLAND II. ANN is even more powerful for a given

network application due its ability to learn [EsSW05].

Task scheduling. AppLeS makes scheduling

decision through estimating the mean of subtask

execution time based on the prediction of resource

utilization provided by NWS. Other system specific

factors are not analyzed due to the inherent limitation of

these methods. The GHS task scheduling system provides

long-term application-level performance prediction. The

effects of machine utilization, computing power, local job

service, and parallel processing on the completion time of

parallel task are considered.

We choose the parameter sweep application to

compare AppLeS and GHS because AppLeS only

supports meta-task scheduling but not general parallel

processing. Since we have proven NWS does not work for

long-term predictions, for a fair comparison, we have

modified AppLeS to let it access GHS’ prediction. The

comparison of application completion time (seconds) and

the number of machine set with the two different

scheduling systems in a simulated Grid environment is

given in Table 1. Simulation results show that the

application completion time with GHS is 10%-20% less

compared with that of AppLeS while only uses about one-

half of the number of machines used by AppLeS. The

GHS scheduling uses fewer machines and finishes in a

shorter time than AppLeS for large applications. The

reason is that GHS scheduling considers the effect of

machine availabilities on parallel processing while

AppLeS does not. GHS scheduling is designed for shared,

dynamic systems. It has a real potential.

Table 1. A Comparison of AppLeS and GHS
scheduling (machine number and task completion

time)
Workload

(Max. machine number)

13801.7

(25)

27619.2

(50)

53779.5

(100)

108642.5

(200)

215141.0

(400)

task time (s) 496.4 557.7 712.8 874.5 1140.4
GHS

number 13 26 57 99 113

task time (s) 547.4 637.4 818.3 1022.7 1266
AppLeS

number 25 50 100 200 400

5. Related work

Figure 3. Expectation and variance of
prediction error on parallel machines

0

10

20

30

40

50

0. 25 0. 5 1 2 4 8

parallel task demand (hours)

expectation

variance

0

2

4

6

8

10

12

p
re

d
ic

ti
o

n
 e

rr
o

r

(%
)

0.5 1 2

parallel task demand

(hours)

expectation

variance

(a)

(b)

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

10 60 100 300 600

Bin Size (s)

M
e

a
n

 E
rr

o
r

(%
)

ANN

NWS

8.00%

11.00%

14.00%

17.00%

20.00%

23.00%

10 60 100 300 600

Bin Size (s)

M
e

a
n

 E
rr

o
r

(%
)

ANN

NWS

(a) AUCKLAND IV

(b) AUCKLAND II

Figure 4. Performance comparison of
ANN and NWS for one step prediction

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Performance evaluation techniques have been widely

used in parallel and distributed programming

environments. Some well-known systems include Paradyn,

TAU, Prophesy, and SCALEA [SuWu03]. These

performance evaluation tools measure and analyze the

application performance. However, they focus on

application performance in a dedicated parallel system

instead of a non-dedicated distributed environment. They

don’t provide performance prediction based on resource

availability. The NWS [WoSH99] monitors and forecasts

resource performance on-line. RPS Toolkit [DiHa99]

predicts the CPU availability of a Unix system over a

small time range with the time series techniques. These

works are for non-dedicated environments. However, they

only predict the short-term (five minutes or less, with a

good prediction around 30 seconds) availability of non-

dedicated resources. There is no application-level

performance analysis and long-term prediction.

Most scheduling methodologies in distributed

systems concern on application performance or system

load balance issues. They are based on either current

system usage or advanced resource reservation

mechanism. Reservation asks resource owners giving up

their privilege and may suffer in system utilization. It

might be useful for high priority tasks or to show the

potential of Grid computing, but has difficulties to be

fully employed in a general enterprise environment. The

experience in the development of the GrADS project

[BCCD01] and other Grid projects has demonstrated that

the integration of performance evaluation mechanism

with application is pivotal to the success of Grid

environments.

6. Conclusions
We have presented the mechanisms and design of the

GHS system for Grid performance prediction and task

scheduling. A prototype of GHS is under development,

which consists of performance evaluation, performance

measurement, task allocation, task scheduling, and

execution management subsystems. Initial experimental

testing is conducted on production machines at Argonne

National Laboratory, Oak Ridge National Laboratory, and

IIT and on real wide-area network traffic collected by

WAND, ITA, and MOAT. Experimental results show that

GHS adequately captures the dynamic nature of Grid

computing. The performance gain of GHS prediction

significantly supersedes other prediction systems such as

NWS. Experimental results also show that, in scheduling

of large applications on a non-dedicated heterogeneous

environment, GHS scheduling decreases the task

completion time by 10%-20% than that of AppLeS, while

using only about one-half of the machines used by

AppLeS.

Current GHS implementation separates the

computing consideration with communication

consideration, and is only for the proof of concept.

Supported by the NSF NGS program, we are working to

fully implement the GHS program. We plan to release a

prototype GHS system for computing intensive

applications in 2005. With continued funding, we plan to

extend the computing-only GHS to support

communication intensive application as well, and

embedded GHS into Grid environment seamlessly via

Java CoG Kit as Grid service.

Acknowledgments
This research was supported in part by national

science foundation under NSF grant CNS-0406328, ANI-

0123930, and EIA-0224377.

References
[BCCD01] F. Berman, A. Chien, K. Cooper, J. Dongarra, et al,

“The GrADS Project: Software Support for High-Level Grid

Application Development”, International Journal of High

Performance Computing Applications, Vol. 15, No. 4, pp. 327-

344, 2001.

[BWCC03] F. Berman, R. Wolski, H. Casanova, W. Cirne, et al,

“Adaptive Computing on the Grid Using AppLeS”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 14, No. 4,

pp 369-382, 2003.

[DGSS04] C. Du, S. Ghosh, S. Shankar, and X.-H. Sun, “A

Runtime System for Autonomic Rescheduling of MPI

Programs,” in the Proc. of the 33rd International Conf. of

Parallel Processing, Montreal, Canada, August 2004.

[DiHa99] P. Dinda, D. O'Hallaron, “An Extensible Toolkit for

Resource Prediction In Distributed Systems”, Technical Report

CMU-CS-99-138, School of Computer Science, Carnegie

Mellon University, July 1999.

[DuSC03] C. Du, X.-H.Sun, and K. Chanchio, “HPCM: A Pre-

compiler Aided Middleware for the Mobility of Legacy Code,”

in the Proc. of IEEE International Conf. on Cluster Computing,

2003, Hong Kong, Dec. 2003.

[EsSW05] A. Eswaradass, X.-H.Sun, M. Wu, “A Neural

Network Based Predictive System for Available Bandwidth,”

accepted to IPDPS2005, 2005.

[FoKe04] I. Foster and C. Kesselman, The Grid2: Blueprint for a

New Computing Infrastructure, Morgan-Kaufman, 2004.

[GoSW02] L. Gong, X.H. Sun, and E. F. Waston, “Performance

Modeling and Prediction of Non-Dedicated Network

Computing,” IEEE Trans. on Computers, Vol. 51, No. 9, pp.

1041-1055, September, 2002.

[HPCM03] HPCM: High Performance Computing Mobility,

http://www.nsf-middleware.org/NMIR4/contrib/download.asp.

[SuWu03] X.-H. Sun and M. Wu, “Grid Harvest Service: A

System for Long-Term, Application-Level Task Scheduling,” in

Proc. of 2003 IEEE International Parallel and Distributed

Processing Symposium (IPDPS 2003), Nice, France, April, 2003.

[WoSH99] R. Wolski, N. T. Spring, J. Hayes, “The network

weather service: a distributed resource performance forecasting

service for metacomputing,” J. Future Generation Computing

Systems, Vol. 15, No. 5-6, pp. 757-768, 1999.

[WuSu04] M. Wu, and X.-H. Sun, “Memory Conscious Task

Partition and Scheduling in Grid Environments”, in the Proc. of

5th IEEE/ACM International Workshop on Grid Computing (in

conjunction with SC 2004), Pittsburgh, Nov. 2004.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

