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Abstract
Conventional performance evaluation mechanisms 

focus on dedicated distributed systems. Grid computing 

infrastructure, on another hand, is a shared collaborative 

environment constructed on autonomic virtual 
organizations. The non-dedicated characteristic of Grid 

computing prevents the leverage of conventional task 

scheduling systems. In this study, we present the design 
and development of the Grid Harvest Service (GHS) 

performance evaluation and task scheduling system for 

solving large-scale applications in a shared network 
environment. GHS combines stochastic models and 

artificial intelligence learning mechanisms with task 
scheduling algorithms. It considers both computing and 

network contention and supports scheduling for single 

task, parallel processing, and meta-tasks. Experimental 
results show that GHS provides a satisfactory solution for 

performance prediction and task scheduling and has a 

real potential. 

1. Introduction 
With the advance of Internet, many scientists turned 

to construct large geographically distributed systems in 

recent years. The successes of distributed systems such as 

Condor, NetSolve, Globus, and Nimrod inspire and 

facilitate the formation of national scale distributed 

environments, Grid computing [FoKe04]. While much 

progress has been made in standardization of protocols 

and interface to facility coordination, the main challenge 

of enterprise network computing remains the same: 

resource management and task scheduling. There is a big 

gap between the potential peak performance and the 

delivered performance in Grid computing. 

The conventional parallel processing scheduling 

methods cannot apply directly to a Grid environment 

where computing resources are autonomic shared. The 

key to Grid task scheduling is to understand the usage 

pattern and predict the availability of computing and 

communication resources, and to find their influence on 

the application performance. Some latest Grid tools, such 

as Network Weather Service (NWS) [WoSH99], have 

been developed to meet the need. However, these tools 

are for short-term resource availability (generally in tens 

of seconds). Another solution is adapting resource

reservation to reduce the complexity of resource 

management in a shared environment. This approach 

requires resource owners to have good planning on their 

own tasks and suffers in system utilization. This approach 

is useful for high priority tasks or to show the potential of 

Grid computing, it but has difficulties to be employed in a 

general enterprise environment. Also, resources 

reservation will be more effective if it is based on 

resource availability prediction. Supported by the NSF 

NGS program, we have been developing a long-term, 

application-level performance prediction and task 

scheduling system, the Grid Harvest Service (GHS) 

system, for Grid computing. The “long-term” signifies 

that the system is designed for large applications that need 

hours of computations and is in contrast to the current 

Grid performance systems such as NWS. By “application-

level” we mean that the goal is to reduce the run-time of 

user applications and is in contrast to resource availability 

prediction. GHS addresses the performance issues of 

computation and communication. It is designed to 

integrate novel stochastic and analytical modeling with 

newly developed scheduling and rescheduling 

methodology to utilize the performance, enhance Quality 

of Service (QoS), reliability, and trust of Grid Computing. 

2. Grid Harvest Service 
A series of technical challenges arise in Grid 

computing due to resource availability and heterogeneity. 

This includes evaluating resource availability on 

application performance, partition and schedule a parallel 

application accordingly, and the support of dynamic 

scheduling. The Grid Harvest Service system comprises 

of five primary subsystems: performance evaluation, 

performance measurement, task allocation, task 

scheduling, and execution management. Coordinately, 

they provide appropriate services to harvest Grid 

computing. 

2.1. Performance evaluation 
The most challenging technical hurdle of task 

scheduling in shared environments is to estimate the 

resource availability and to find its influence on the 

application performance. Analytical modeling in general 

has limited success in capturing the effect of “sharing” of 

non-dedicated resources. Nonetheless probability and 

stochastic modeling are often either too simplified or 

cannot reach a meaningful solution for a given 
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engineering application. Existing models do not match the 

complexity of the Grid. 

Computation modeling. We have developed a 

model for non-dedicated computing [GoSW02]. It was 

derived from a combination of rigorous mathematical 

analysis and intensive simulation to make it generic and 

practically useful. The model considers the heterogeneous 

machine utilization and computing capacity, 

heterogeneous job arrival rate as well as heterogeneous 

service distributions. The effects of machine utilization, 

computing power, local job service and task allocation on 

the completion time of remote task are individually 

identified. 

We refer the application under scheduling the remote 

task and the other competing local processes the local 

jobs. As observed and reported by researchers at 

Wisconsin-Madison, Berkeley, Maryland, et al, the arrival 

of local jobs in machine usage patterns follows a Poisson 

distribution with , the service time of local jobs follows 

a general distribution with mean /1  and standard 

deviation . The cumulative distribution function of the 

remote task completion time is derived as: 

otherwise
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where /  is the machine utilization,  is the 

coefficient of variation of service,  is the computing 

capacity, and w  is the workload of the remote task. The 

first term on the right-side of equation (1) is the 

performance without interruption. The second term, 

),0|/)(Pr()1( / SwtSUe w  is the performance with 

the interruptions. Special efforts were made to use 

intensive simulations to find the distribution of the second 

term so that equation (1) can be used in actual 

performance predication. In the case of a parallel 

application, )Pr()Pr( tTtT k
is used to calculate the 

cumulative distribution function of the application 

completion time. Initial experimental results confirm the 

theoretical finding and show this model is practical and 

works well. 

Communication modeling. Modeling of end-to-end 

network performance is essential for estimating the 

communication cost of message transfer between parallel 

processes and data transfer among dependent tasks. 

Queuing theory has been widely applied in the analysis of 

network performance based on the assumption of Poisson 

job arrival with exponential service time. However, this 

assumption is against the observation of real-world 

network traffic, which presents self-similar properties. 

Moreover, the end-to-end network path between two 

remote nodes may dynamically change to adapt the 

variation of network traffic. These characteristics make 

network performance modeling extremely challenging. 

Existing models do not capture the complicated short and 

long-range temporal dependence characteristic of wide-

area network traffic. 

We have applied ANN (Artificial Neural Network) 

techniques to model network traffic [EsSW05]. The 

strengths of ANN are its outstanding learning abilities, 

robustness to noise, and need of little prior knowledge. By 

online learning, ANN model can take into account the 

changes in the environmental conditions and adapt itself 

to the changes. Our ANN model predicts network 

performance in terms of available bandwidth and latency, 

and consists of five basic steps: collecting network traffic 

data; setting the right bin size and prediction step; 

preparing input parameters for neural network training; 

choosing appropriate ANN parameters such as learning 

rate, epoch number, and layer structure; and verification 

of established ANN model. A challenge in the 

construction of neural network model is the tradeoff 

between prediction accuracy and cost. After exhaustively 

examining all combinations of possible input parameters 

derived from the real-world network traffic trace files 

provided by WAND, ITA, and MOAT [EsSW05], we 

have identified the following parameters as most useful 

information for bandwidth prediction: timestamp, average 

packet rate, average bit rate, and their past information. 

To further improve the prediction accuracy, we examine 

the network traffic composition in the trace files. We find 

the network traffic in trace file, which is usually 

composed of different types of application traffic like 

TCP, UDP, ICMP and others. The application traffics 

statistics indicate that each type of traffic data presents a 

different traffic pattern. Instead of training one neural 

network to learn different patterns, we can construct an 

individual neural network model for each of them and 

then combine the individual prediction results into the 

overall traffic prediction. 

2.2. Task allocation 
Similar to parallel computing, Grid computing 

generally involves three steps: task allocation, task 

scheduling, and task execution. Task allocation decides 

how to partition an application into subtasks and then task 

scheduling maps them to a chosen set of resources for 

optimal performance. Workload balance approach is 

widely used in parallel computing. Conventional parallel 

computing tools cannot directly be applied to the Grid due 

to its heterogeneous and dynamic resource availability 

and capacity. A mean-time task partition algorithm is thus 

developed in GHS to distribute the workload of a parallel 

program to each resource so that the difference of the 

mean of expected execution times of the subtasks is 

minimal. A min-min algorithm is implemented to cluster 

subtasks of a meta-task and map each set of subtasks to a 

resource based on the prediction of the execution time of 

each set. The basic idea of these two algorithms is 

execution time balance, in contrast of the conventional 
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workload balance approach. A detailed description of task 

partition with respects of CPU, memory, network 

resource heterogeneity and resource sharing is given in 

[WuSu04]. 

2.3. Task scheduling 
The GHS task scheduling takes the prediction from 

the performance evaluation subsystem. It supports 

different scheduling scenarios according to the 

application’s requirement. Scheduling algorithms are 

proposed and tested for sequential task, parallel program, 

and meta-task, respectively. A heuristic scheduling 

algorithm is proposed to find a near optimal solution with 

a reasonable cost based on our computing model 

[SuWu03]. 

A challenge of task scheduling in Grid computing is 

to handle different abnormal situations, such as abnormal 

computing and I/O performance, system shut down, un-

trusted system behavior, failure of Globus software 

package, and undermined security. To provide reliable 

scheduling, we implement a trigger system that uses the 

GHS performance measurement subsystem to collect 

information and automatically trigger rescheduling 

[DGSS04]. The trigger system is rule-based and can add 

in new abnormal conditions. A task-rescheduling 

algorithm and associated environment is developed 

[WuSu04]. The subtasks on resources showing abnormal 

performance are assigned to other appropriate resources 

based on a re-estimation of the application completion 

time. A variant of formula (1) is used to calculate the 

cumulative distribution function of the application 

execution time in this situation.  
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2.4. Execution Management
Execution management subsystem carries the task 

partition, scheduling, and re-scheduling policies. It 

consists of two parts: task management and execution 

engine. The task management maintains the map of 

application’s subtasks among resources and their running 

status. The execution engine serves job submission, 

monitoring, and task re-scheduling. It also cooperates 

with the performance evaluation subsystem to identify 

abnormalities. When either a subtask is finished or a 

performance abnormality is identified, the execution 

engine reports it to the task management component. In 

the latter case, a task re-scheduling will be triggered and 

task re-scheduling algorithms will be invoked to find 

where and when the subtasks should be moved or 

migrated. Funded by the NSF Middleware Initiative (NMI) 

program, we have developed a process migration system, 

named the High Performance Computing Mobility 

(HPCM) [HPCM03, DuSC03], which supports run-time 

process migration of native codes written in C or Fortran 

in a heterogeneous Grid environment between different 

virtual organizations. HPCM provides the infrastructure 

for actual run-time dynamic scheduling and task 

reallocation. 

3. Software Architecture 
The Grid Harvest Service system is designed based 

on the novel prediction, partition, and scheduling 

mechanisms discussed above.. Its software architecture is 

depicted in Figure 1. Its major components include 

performance measurement engines, system-level 

predictors, an application-level predictor, a task allocator, 

a task scheduler, execution engines, as well as a task 

manager. The performance evaluation subsystem is 

designed with an application-level predictor and system-

level predictors component that are distributed on each 

resource. The execution management subsystem consists 

of a task manager and an execution engines component. 

The life cycle of a meta-task scheduling with GHS is 

presented as follows to illustrate how each GHS 

component collaborates to enable the running of 

applications in shared environments. 

1. A user uses a task editor to compose the meta-task he 

wants to submit. He can select a group of machines for his 

application running or leaving it to the task manager. The 

task manager will collect the resource information and 

decide which set of machines is appropriate. 

2. The task manager sends a task scheduling request to 

the task scheduler, which includes the application 

information and resource information. Based on the 

request, the task scheduler consults the system-level 

predictor on correspondent resources to get the estimated 

resource availability. The task scheduler then contacts the 

task allocator and the application-level predictor to find an 

optimal plan that satisfies the user’s requirement. 

3. The task manager records the mapping information of 

subtasks among resources returned by the task scheduler. 

After that, the task manager sends subtasks and their input 

and output files to the execution engines on correspondent 

resources according to the map information through scp or 

the GridFTP service. 

4. After receiving the subtask allocation information, the 

execution engine (EE) consults the local resource 

management system to submit application’s subtasks. It 

monitors the subtask running and maintains the status of 

subtasks. When a subtask is completed, the execution 

engine sends a message to update the application status in 

the task manager. 
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5. During the execution of subtasks, the performance 

measurement engine (PME) monitors the resource status 

and the execution engine collect the application running 

information. The execution engine periodically compares 

the observed resource behavior and the expected resource 

behavior obtained through the system-level predictor 

(SLP). If abnormal situations are detected, a rescheduling 

request is sent to the task manager.  

6. The task manager collects the latest status of tasks and 

resources in the system and sends the information to the 

task scheduler for task reallocation. Based on the 

generated rescheduling plan, the HPCM is invoked to 

move the application’s subtasks from abnormal resources 

to appropriate machines. 

Step 4 – Step 6 are repeated until the completion of a 

Grid meta-task. 

The above software architecture allows seamless 

integration of GHS components with Grid services to 

enable efficient performance evaluation and task 

scheduling. The Grid Information Service can be used by 

the task manager to locate potential available resources. 

The Grid FTP service can be used to handle the transfer 

of applications and their data files and the GRAM can be 

used in execution engines to dispatch subtasks on 

resources. Following OGSA, the task scheduler and the 

application predictor can be represented as Grid services 

so that they can serve other Grid Services, such as the 

Grid-enabled Programming System (GEPS), Problem 

Solving Environment (PSE), in a Grid runtime system. 

4. Experimental results 
We have partially implemented the GHS system as a 

proof of concept. Initial experimental results, collected at 

the Argonne and Oak Ridge national laboratories, as well 

as at IIT, are very encouraging. They confirm the GHS 

design principle and its potential. We have compared the 

prediction error of GHS and NWS [WoSH99] and the 

performance of GHS scheduling and AppLeS [BWCC03] 

scheduling for long-term applications [SuWu03, 

EsSW05]. We consider NWS and AppLeS, as they are the 

best-used performance prediction and task scheduling 

system, respectively, in current Grid computing practice. 

Performance Evaluation. The Network Weather 

Service [WoSH99] provides short-term system-level 

performance prediction based on various simple 

forecasting methods. As it claims, it is suitable for jobs of 

five minutes time span or less. To evaluate the accuracy 

of the prediction model, we define the prediction error as 

|
Pr

|
tMeasuremen

tMeasuremenedictionperiod . Figure 2 shows an 

experiment conducted on the 64-node Sun ComputeFarm, 

named Sunwulf, at IIT. The application is a replication of 

NAS Serial Benchmarks. The class type of these 

benchmarks is “A” or “W”. The local job’s lifetime is 

simulated with the observation of real-life processes 

[SuWu03]. The three predictions are based on NWS 

prediction in terms of 10 seconds (default set of NWS) 

and 5 minutes, and prediction provided by GHS, 

respectively. It shows that the prediction error based on 

NWS remains very high while the prediction error based 

on GHS decreases with the increase in application 

workload. This comparison shows that the GHS approach 

is fundamentally more appropriate for long-term 

applications. 

Figure 3 (a) gives the expectation and variance of the 

prediction error on the parallel program completion time 

with different task demands (from 4 to 256 hours 

sequential processing time) on 32 nodes of the Sunwulf.

Each node is simulated with different usage patterns. The 

expectation and variance of the prediction error get 

smaller with the increase in job length. We also evaluate 

the prediction model on actual Grid environments. Figure 

3 (b) shows the prediction error of a remote parallel task 

completion time on Pitcairn, a productive Grid node at 

Argonne National Laboratory. Pitcairn is a 

Figure 2. Mean of the prediction error of NWS 
and GHS 
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multiprocessor with 8 250MHz UltrasparcII processors 

and 1GB of shared memory. It is a Grid node shared by 

many users. The result again shows that the expectation 

and variance of the prediction error get smaller as the 

demand of remote task increases. 

To verify the efficiency of the proposed Neural 

Network based prediction approach for network 

performance estimation, comparison is made with that of 

NWS. Figure 4 shows the performance comparisons of 

ANN and NWS for varying bin sizes for one-step 

prediction of AUCKLAND IV and II traces [NLAN04]. 

From the graph we can see that the prediction results of 

ANN supersede those of NWS for each bin size, 

illustrating the performance of the ANN mechanism is 

noticeably better than that of NWS. Compared with the 

prediction error of NWS, the performance gain of ANN 

prediction is 26.1% for AUCKLAND IV and 34.4% for 

AUCKLAND II. ANN is even more powerful for a given 

network application due its ability to learn [EsSW05]. 

Task scheduling. AppLeS makes scheduling 

decision through estimating the mean of subtask 

execution time based on the prediction of resource 

utilization provided by NWS. Other system specific 

factors are not analyzed due to the inherent limitation of 

these methods. The GHS task scheduling system provides 

long-term application-level performance prediction. The 

effects of machine utilization, computing power, local job 

service, and parallel processing on the completion time of 

parallel task are considered. 

We choose the parameter sweep application to 

compare AppLeS and GHS because AppLeS only 

supports meta-task scheduling but not general parallel 

processing. Since we have proven NWS does not work for 

long-term predictions, for a fair comparison, we have 

modified AppLeS to let it access GHS’ prediction. The 

comparison of application completion time (seconds) and 

the number of machine set with the two different 

scheduling systems in a simulated Grid environment is 

given in Table 1. Simulation results show that the 

application completion time with GHS is 10%-20% less 

compared with that of AppLeS while only uses about one-

half of the number of machines used by AppLeS. The 

GHS scheduling uses fewer machines and finishes in a 

shorter time than AppLeS for large applications. The 

reason is that GHS scheduling considers the effect of 

machine availabilities on parallel processing while 

AppLeS does not. GHS scheduling is designed for shared, 

dynamic systems. It has a real potential. 

Table 1. A Comparison of AppLeS and GHS 
scheduling (machine number and task completion 

time)
Workload 

(Max. machine number)

13801.7

(25) 

27619.2 

(50) 

53779.5 

(100) 

108642.5

(200) 

215141.0

(400) 

task time (s) 496.4 557.7 712.8 874.5 1140.4
GHS

number 13 26 57 99 113 

task time (s) 547.4 637.4 818.3 1022.7 1266 
AppLeS

number 25 50 100 200 400 

5. Related work 

Figure 3. Expectation and variance of 
prediction error on parallel machines 
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Performance evaluation techniques have been widely 

used in parallel and distributed programming 

environments. Some well-known systems include Paradyn, 

TAU, Prophesy, and SCALEA [SuWu03]. These 

performance evaluation tools measure and analyze the 

application performance. However, they focus on 

application performance in a dedicated parallel system 

instead of a non-dedicated distributed environment. They 

don’t provide performance prediction based on resource 

availability. The NWS [WoSH99] monitors and forecasts 

resource performance on-line. RPS Toolkit [DiHa99] 

predicts the CPU availability of a Unix system over a 

small time range with the time series techniques. These 

works are for non-dedicated environments. However, they 

only predict the short-term (five minutes or less, with a 

good prediction around 30 seconds) availability of non-

dedicated resources. There is no application-level 

performance analysis and long-term prediction. 

Most scheduling methodologies in distributed 

systems concern on application performance or system 

load balance issues. They are based on either current 

system usage or advanced resource reservation 

mechanism. Reservation asks resource owners giving up 

their privilege and may suffer in system utilization. It 

might be useful for high priority tasks or to show the 

potential of Grid computing, but has difficulties to be 

fully employed in a general enterprise environment. The 

experience in the development of the GrADS project 

[BCCD01] and other Grid projects has demonstrated that 

the integration of performance evaluation mechanism 

with application is pivotal to the success of Grid 

environments. 

6. Conclusions
We have presented the mechanisms and design of the 

GHS system for Grid performance prediction and task 

scheduling. A prototype of GHS is under development, 

which consists of performance evaluation, performance 

measurement, task allocation, task scheduling, and 

execution management subsystems. Initial experimental 

testing is conducted on production machines at Argonne 

National Laboratory, Oak Ridge National Laboratory, and 

IIT and on real wide-area network traffic collected by 

WAND, ITA, and MOAT. Experimental results show that 

GHS adequately captures the dynamic nature of Grid 

computing. The performance gain of GHS prediction 

significantly supersedes other prediction systems such as 

NWS. Experimental results also show that, in scheduling 

of large applications on a non-dedicated heterogeneous 

environment, GHS scheduling decreases the task 

completion time by 10%-20% than that of AppLeS, while 

using only about one-half of the machines used by 

AppLeS. 

Current GHS implementation separates the 

computing consideration with communication 

consideration, and is only for the proof of concept. 

Supported by the NSF NGS program, we are working to 

fully implement the GHS program. We plan to release a 

prototype GHS system for computing intensive 

applications in 2005. With continued funding, we plan to 

extend the computing-only GHS to support 

communication intensive application as well, and 

embedded GHS into Grid environment seamlessly via 

Java CoG Kit as Grid service.   
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