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Abstract—This paper presents an online scheduling methodology for task graphs with communication edges for multiprocessor

embedded systems. The proposed methodology is designed for task graphs which are dynamic in nature either due to the presence of

conditional paths or due to presence of tasks whose execution times vary. We have assumed homogeneous processors with

broadcast and point-to-point communication models and have presented online algorithms for them. We show that this technique

adapts better to variation in task graphs at runtime and provides better schedule length compared to a static scheduling methodology.

Experimental results indicate up to 21.5 percent average improvement over purely static schedulers. The effects of model parameters

like number of processors, memory, and other task graph parameters on performance are investigated in this paper.

Index Terms—Multiprocessor scheduling, task graphs, static and online scheduling, edge scheduling.
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1 INTRODUCTION AND RELATED WORK

THE increasing requirement of computing power has
shifted embedded system designs from a single

processor to multiple-processor-on-a-chip solutions. A
typical multiprocessor consists of a set of processors
connected via a communication subsystem for exchanging
data. A directed acyclic graph (DAG) is used to describe an
application at a high level. Scheduling of the nodes to the
processors (task scheduling) and edges to the communication
channels (edge scheduling) with the objective of minimizing
overall execution time of the DAG is called the general
Multiprocessor Scheduling problem.

This general scheduling problem is known to be NP-hard.
A survey by Kwok and Ahmed [1] provides a compilation of
majority of heuristics which are largely static in nature and
are based on List Scheduling. The scheduling algorithms
typically address a particular task and processor model, e.g.,
arbitrary communication/computation execution cost [2],
[3], conditional nodes [4], probabilistic execution cost [5],
heterogeneous [6], and arbitrarily connected processor
models [7]. Among the above models, this work focuses on
the scheduling problem of task graphs which are dynamic in
nature due to the fact that they are comprised of either
conditional tasks which are evaluated at runtime or tasks
whose exact execution times are not known in advance. It

proposes a new contention aware online scheduling meth-
odology for dynamic task graphs for multiprocessors with
limited channel capacity.

In the scheduling problem of task graphs with commu-
nication, several methodologies appear in the literature.
Task Duplication Based (TDB) scheduling algorithms, e.g.,
Critical Path Fast Duplication (CPFD) by Ahmed and Kwok
[8], limited duplication by Bansal et al. [9], and duplication
minimization algorithm by Shin et al. [10], duplicate tasks
across multiple processors to reduce the amount of
communication. Similarly, an optimal scheduling algorithm
on arbitrary number of processors for low-communication
task graphs has been proposed by Park and Choe [11].
Clustering-based solutions cluster a set of nodes involved in
large communications and schedule the clustered nodes
together in a single processor [12]. The above methods try to
minimize the actual communication on the communication
channels in the schedule. However, they do not take into
account the contention in the communication channel.
Sinnen and Sousa [13] have proposed a contention aware
modified list scheduling scheme for realistic communica-
tion subsystem models. The algorithm statically resolves
contention by appropriate communication routing and,
thus, improves on the classical list scheduling algorithms.

Majority of the above algorithms are based on static list
scheduling algorithms guided by the graph structure,
execution cost, and communication cost. However, in the
presence of conditional tasks, the graph structure varies
from one execution to the other depending on the
conditions evaluated. Xie and Wolf proposed a static
mutual exclusion detection algorithm [4] for efficient
processor resource sharing. However, it may be noted that
two tasks which are not statically mutually exclusive may
not coexist under certain execution conditions at runtime,
which cannot be used for processor resource sharing by the
above scheme. Moreover, within a macro task, parameters
like conditional paths, loops, cache hits, and interrupts lead
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to unpredictable execution behavior at runtime. Static
schedulers often use worst case execution time which may
be multiple times greater than the actual execution time
[14]. Among the few research works on such variable tasks,
Yang et al. [15] have modeled the tasks and communica-
tions as stochastic variables and proposed a genetic
algorithm to optimize schedule length. Satish et al. [16]
have introduced the concept of Statistical Static Level to
prioritize tasks and they have presented a Simulated
Annealing method for optimizing the deterministic sche-
dule. Wang et al. [17] have modified the list scheduling
algorithm to incorporate statistical timing analysis and have
shown considerable improvements.

The above static schedules, whether generated by the
worst case, average case, or statistical behavior of the tasks,
run into the problem of precommitting the schedule to the
processors. A task then can only be executed on the assigned
processors even if a favorable rescheduling is possible on
another processor. Though online scheduling schemes do not
have this constraint, they have not been studied extensively
due to negligible or marginal improvements for determinis-
tic tasks as well as for their runtime overhead. Among few
classically studied methodologies, Feldmann et al. presented
a technique for online scheduling of parallel jobs assuming
that the task execution time is not known a priori [18]. For
reducing the scheduling overhead, low-overhead techniques
have been proposed, e.g., the scheduling algorithms pro-
posed by Anderson et al. [19] and Gupta et al. [20]. Intel TBB
scheduler [21] uses “breadth-first theft and depth-first work”
strategy to maximize utilization of threads. However, the
scheduler does not take static priority, communication, and
contention into consideration and it is designed for fine-
grained tasks with low overhead. Choudhury et al. [22]
proposed a mixed static and online approach for such
dynamic task graphs without any communication cost which
shows improvement over pure static schedulers.

This work focuses on a contention aware online
strategy for the scheduling problem of dynamic task
graphs onto a multiprocessor system with limited com-
munication capacity. The contribution of this paper is
mainly twofold. First, the scheduling problem model is
more realistic compared to conventional schemes because
the model considers task graphs which are subject to
variation at runtime and interprocessor communications of
fixed number of channels. Second, we have proposed an
online scheduling scheme as an alternative to overcome
the above-mentioned limitations of conventional static
schedulers for two types communication schemes, namely,

broadcast and point-to-point communication schemes. We
have compared our results with the contention aware
static scheduling presented by Sinnen and Sousa [13] and
Xie and Wolf [4]. Experimental results indicate that the
proposed methodology shows up to 21.5 percent average
schedule length improvement over static schedulers. The
effects of graph and processor model parameters like edge
density, number of conditional paths, and channel
capacity are studied with various experiments.

We explain the motivation of the work in Section 2. The
task graph, processor, and scheduling models are included in
Section 3. Section 4 presents the online scheduling algorithms
for the two types of assumed communication models.
Experimental results and comparison with static schedulers
are presented in Section 5. Section 6 concludes the work.

2 MOTIVATIONAL EXAMPLE

Traditionally, static scheduling is preferred over online
scheduling due to the assumption of deterministic nature of
the tasks. In the setting of dynamic task graphs, a task
graph has either conditional execution paths or it is
comprised of tasks with variable execution times. In the
following sections, we illustrate the motivation of this work
by taking two examples of dynamic task graphs consider-
ing the above aspects separately. In the first example
(Fig. 1a), we consider a task graph with eight nodes
comprising of a conditional node v2 with fixed execution
times. We schedule it optimally for the worst case behavior
by a static scheduler proposed by Xie and Wolf [4] (Fig. 1b).
It can be observed that by making an online remapping of
nodes at time t ¼ 10 (when v2 is evaluated), the schedule
length can be improved by four units for the case when v2 is
evaluated to A0 (Fig. 1c). In the second example (Fig. 2a), we
consider a static schedule (Fig. 2b) which is optimal for a
task graph with deterministic execution time and with no
conditional tasks. We examine two cases: 1) v3 finishing
early (Fig. 2c), and 2) v2 finishing early (Fig. 2d) and extract
the new schedule lengths. It can be observed from Fig. 2e
that by an online remapping of v4, the schedule length
improves by three time units. We also observed that for
both the examples, no static mapping will be able to
provide schedule length improvement for all the cases
(Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.104). Thus, an online scheduler capable
of remapping of nodes at runtime is required.
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Fig. 1. (a) An example of conditional task graph, (b) static schedule on two processors, and (c) online remapping of v4.



3 MODELS, NOTATIONS, AND DEFINITIONS

3.1 Task Graph Model

The application task graph model used in this work is called
a Conditional Task Graph (CTG). A CTG is a special DAG,
G <V ;E>, where V ¼ VS [ VC represents set of non-
preemptive tasks and E represents the communication
edges between the tasks. VS and VC represent the set of
simple and conditional tasks, respectively. When a condi-
tional task is executed, only one path among its outgoing
edges is selected for further execution. Each node vi
(vi 2 V ðGÞ) can execute between its worst case and best
case execution values which are known a priori. The
precedence and communication between vi and vj is
expressed as a directed edge eij.

. WCETvi
, BCETvi

. Worst Case and Best Case Execu-
tion Time of vi.

. exvi
. Actual execution time of the node vi. It takes a

value between BCETvi and WCETvi .
. cðeijÞ. Communication cost on edge eij.
. ccr. Average communication to average computation

ratio in a task graph

P
eij2E

cðeijÞ
jEjP
vi2V

exvi

jV j

:

If ccr of a task graph is low, then it is more
computation heavy; otherwise, it is more commu-
nication heavy.

. source, sink. The start and end node, respectively,
of a DAG. We assume a single source and a single
sink node in a task graph.

. parentvi
, childvi

. Set of immediate parent and
children nodes of vi, respectively.

. edgedensity. jEj expressed as a fraction of max-
imum possible edges with jGj vertices of a task
graph. This indicates the density of precedence
constraints in the graph.

3.2 Processor Model

Several processor architectures appear in the literature,
including homogeneous/heterogeneous processor models
[6], and different interprocessor communication models like
buses, switches, half/full duplex links, multihop (partially
connected) networks [13]. We have chosen a model consisting
of homogeneous processors connected by a shared bus with

limited channels because they are most common. The
processor model is represented by a set of homogeneous
processing elements PE ¼ fpe1; pe2; pe3; . . . ; pejPEjg con-
nected via a bus with few channels B¼ fC1; C2; . . . ; CzðBÞg
for interprocessor communication, where zðBÞ represents the
number of independent channels and Ci is the ith commu-
nication channel. All the channels can carry only one
communication at any point in time and, hence, are subjected
to channel contention. They are connected to all the
processors, and hence, there is no end-point contention.
Every channel has an independent buffer to store the data and
initiates the communication from that buffer when it finishes
the ongoing communication. We have assumed following
two types of communication model in the shared bus.

. Broadcast communication model. In this type of
communication model, a channel carrying a com-
munication delivers the data to all the processors.

. Point-to-point communication model. In this type of
communication model, a channel carrying a com-
munication delivers the data to a processor specified
by the processor initiating the communication.

3.3 Scheduling Notations

A task v is said to be scheduled when its start time (STv) and
processor mapping (pev) are allocated.

. SUv. Static urgency of a node v. It is the maximum
length from the start of v to the sink.

. ��ðV Þ. An ordering of nodes for the node set V , such
that if SUvi > SUvj then vi precedes vj in the order.

. drtðv;peÞ. Data Ready Time. Time t at which v can
start execution on a processor pe.

. PE Available timeðv;peÞ. Time unit t at which v
can start its execution on pe.

4 PROPOSED ONLINE SCHEDULING

4.1 Methodology

We present online scheduling algorithms for the two types
of communication models described in the processor model
in Section 3.2, namely, broadcast and point-to-point com-
munication models. In both the cases, the proposed
methodology uses a Global Scheduler, which schedules the
tasks on processors and edges on the channels.

4.1.1 Global Scheduler Modeling

The design of the global scheduler is essentially the core of
the proposed methodology which either schedules a task or
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Fig. 2. (a) An example task graph with variable execution times, (b) schedule on two processors, (c) optimal static schedule with v3 is finishing early,
(d) static schedule with v2 finishing early, and (e) online remapping with v2 finishing early.



a communication at runtime. The global scheduler is
notified by an event when there is a change in any of the
processor states. The global scheduler’s functionality can be
modeled by the following two events.

1. Task completed event. A task completed event is
generated by a processor when it completes execution
of the assigned task on it. At this event, the global
scheduler assigns the outgoing communications of
the finished task to channels. Additionally, in the
point-to-point communication model, it schedules
the child tasks for a future time in a processor.

2. Free processor event. A free event is generated by a
processor to notify the global scheduler when it is
free and it has received a new communication. At
this event, the global scheduler analyzes the pro-
cessor state and it may assign a task to the processor
for execution.

At the start, the global scheduler schedules the source node
to one of the processors and then waits for any processor
state change event. When the source node finishes
execution, it schedules the child tasks of the source, the
required communications to appropriate resources, and
again waits for the events to be generated from the
processors. The scheduling continues till the sink node
finishes its execution. At any given instant of time, the
global scheduler maintains the partial schedule state to
make a best possible scheduling decision during handling
an event.

The procedures for handling the above two types of events
sufficiently explain the proposed online methodology. An
illustrative example is given in Appendix B, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.104, for
the proposed methodology.

4.1.2 Online Scheduling under Broadcast

Communication Model (Algorithm 1)

In this communication model, when a task is completed, the
global scheduler needs to schedule the edges on the
channels. Since all the processors receive the communica-
tion by the channel, the scheduling decision of the child
tasks (targets of the above-mentioned communications) can
be deferred to a later time. The edge scheduling is done by
selecting the edge that has highest priority based on the
priority SU of the child tasks. If the completed task is a
conditional task, then only one among the outgoing edges is
considered based on the condition evaluated. The selected
edge is then allocated to the channel that gives the earliest
start time. At the free processor event, the global scheduler
analyzes all the communications that have arrived on the
processor and selects the task with highest priority for
execution, hence confirming to the methodology of ETF-
based static scheduling. The event handling details are
given in the description of Algorithm 1.

Algorithm 1. Global scheduler for broadcast

communication model

Event - Task Completed {vi completes on p}

Let Vr be Childvi if vi 2 Vs else Childvi with exception

of nodes based on the conditions evaluated at vi

while Vr is not empty do

Let vj be the first element in the ordering �ðVrÞ
Let C  the channel in bus B that provides minimum

start time (based on on-going and queued

communications)

Schedule eij on C, Remove vj from Vr
end while

End Event

EVENT - Free Processor Event {A processor pe is free and

a communication has arrived}

Let Vr be set of tasks that are ready on processor pe and not

scheduled on any other processor

Let v be the first element in the ordering �ðVrÞ
STv  tf Schedule and Start v on peg
End Event

4.1.3 Online Scheduling under Point-to-Point

Communication Model (Algorithm 2)

In this communication model, every edge that is scheduled
on a channel must have a destination processor, which in
turn means that the target task of that communication has
to be tentatively scheduled on that destination processor.
Hence, when a task is completed, the global scheduler not
only decides to schedule the edges on the channels, but
also decides which processor the child task will be
executed on for better schedule length, thus making a
joint scheduling decision. Therefore, the global scheduler
schedules the edges on channels and makes a future
scheduling of all the child tasks of the finished task. The
actual start time of the task, however, is decided at
runtime. To make a proper scheduling decision of a task
vj onto a processor, the global scheduler needs to know the
expected time at which the task can start on any given
processor. This value depends on the tentative schedules
(which again depends on the drt of those tasks) of the
already scheduled tasks on that processor. The value also
depends on the data ready time drt of the current task (vj)
on that processor. Hence, an accurate estimation of drt is
needed to choose a processor for scheduling. For this, the
scheduler uses the partial schedule (actual execution time
or start time of tasks executed till now) to either accurately
calculate or estimate the drt of any task at any given time.
The value of drtðvj; peÞ can be calculated as a maximum of
edge arrival time eatðeij; peÞ (1) from all the incoming
edges of vj from parentvj

eatðeij; peÞ ¼ cðeijÞ þ STvi þ exvi ; ð1Þ

drtðvj; peÞ ¼ maxðeatðeij; peÞÞ8vi 2 parentvj : ð2Þ

drtðvj; peÞ can be calculated with the equation given in
(2). If vi (vi 2 parentvjÞ is already started or scheduled in one
of the processors, STvi is the actual start time of vi. If vi is not
scheduled, then STvi is the as-soon-as-possible (ASAP) time
of vi. Similarly, if vi is already completed, then exvi is the
exact execution time of vi, else it is the expected execution
time of vi. If vi has already been scheduled and started in
the same processor pe, then cðeijÞ is taken as 0, else it is the
communication weight on the edge.
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At the free processor event, the global scheduler behaves

exactly as before. The event handling details are given in

the description of Algorithm 2.

Algorithm 2. Global scheduler for point-to-point

communication model

Event - Task Completed {vi completes on p}
Let Vr be Childvi if vi 2 Vs else Childvi with exception

of nodes based on the conditions evaluated at vi
while Vr is not empty do

Let vj be the first element in the ordering �ðVrÞ
Let C  the channel in the bus B that provides

minimum start time

if vj is already scheduled on a processor peðvjÞ then

Schedule eij; peðvjÞ on C {schedule eij on Channel
C intended for processor peðvjÞ}

else

Let pek  minðPE Available timeðvj; peÞÞ; 8pe 2 PE
{Select Channel for edge scheduling}

Schedule eij on C from p to pek {schedule eij on

Channel C intended for processor pek}

Schedule vj on pek
end if

Remove vj from Vr
end while

End Event

EVENT - Free Processor Event {A processor pe is free and

a communication has arrived}

Let Vr be all the tasks that are ready on processor pe

Let v be the first element in the ordering �ðVrÞ
STv  t { Schedule and Start v on pe}

End Event

PROCEDURE - PE Available timeðv; peÞ {Calculates the

tentative schedule time of Task v on pe}

Calculate Expected data arrival time drtðv; peÞ
Tentatively schedule v on pe after the time drtðv; peÞ such

that for any scheduled task vs after v, SUv < SUvs
Return expected start time of v on pe

End PROCEDURE

4.2 Complexity and Overhead

The overall complexity of the broadcast communication

scheduler for the task completed event and free processor

event are OðjEjzðBÞÞ and OðjV kPEjlogðjV jÞÞ, respectively.

Similarly, the overall complexity of the point-to-point

communication scheduler for the task completed event

and free processor event are OðjV j2Þ and OðjV jlogðjV jÞÞ,
respectively. The local processor complexity for storing the

ready task list is OðjV jlogðjV jÞ. The complexity derivation

details can be found in Appendix C, which can be found

on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPDS.2011.104.

5 EXPERIMENTAL RESULTS

We evaluate the proposed online scheduling algorithm for

1) conditional task graphs with fixed execution time, and

2) unconditional task graphs with nodes of unpredictable
execution time, separately.

5.1 Experiments on Random Conditional Task
Graphs with Fixed Execution Nodes

5.1.1 Setup

We have modified the random task graph generation model
defined by Johnsonbaugh and Kalin [23] to generate
random conditional task graphs with communication. The
number of nodes (jV j) was varied from 100 to 500, and edge
density from 5 to 50 percent. The communication to
computation ratio (ccrÞ was varied from 0.1 to 10.0. For
each combination of parameters, 100 random DAGs were
generated. Random worst case execution cost was assigned
between 5 and 50 units on each node. The number of
conditions jCj (expressed as a fraction of jV j) was varied
from 2 to 6 percent. This way, we generated 10,000 wide
range of random task graphs producing different struc-
tures. The effects of different parameters were studied
experimentally on the generated task graph set.

5.1.2 Experiments

The schedule length generated by the proposed strategy
was compared to the contention-aware static scheduler
proposed by Sinnen and Sousa [13]. Since this contention
aware scheduler algorithm is not clearly defined for
conditional task graphs, we made certain modifications to
the static scheduler with the concepts of resource sharing
given by Xie and Wolf [4] for comparison. If Li is the
schedule length produced by Sinnen and Sousa [13] with
resource reclaim and L0i is the schedule length produced by
the proposed strategy for the ith instance of total of I
instances of a task graph G execution, the average case
schedule improvement (Av ImprovGð%Þ) is calculated as

PI
i¼1
ðLi�L0iÞ�100

Li

I
:

The average improvement (Average % Improvement) for a
task graph set of N task graphs is calculated as

PN
i¼1 Av ImprovGi

ð%Þ
N

:

For all the experiments, we have used the value of I to be
500 or 2jCj, whichever is lower. In the first experiment,
we varied the edge density of the task graph and noted the
performance improvements varying the number of condi-
tional nodes (jCj from 2 to 6 percent) (Fig. 3). Then, we
varied the ccr to test the schedule performance for task
graphs with low communication delay as well as task
graphs with high communication delay. For this experi-
ment, we chose task graphs with suitable edge density and
limited number of processors to produce a large number of
communications at runtime. On the same experiment, we
also varied the number of channels (zðBÞ) to obtain the
effect of online edge scheduling (Fig. 4). The best case/
worst case improvement/degradation was also noted for
the entire simulation (Fig. 5).

5.1.3 Results

Fig. 3 shows the improvement on schedule length of the
proposed online method over the static scheduler with
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varying edge density for different jCj. We also observed
that the proposed scheduler provides identical schedules
for both broadcast and point-to-point communication
method in about 60 percent of the simulations. However,
the point-to-point communication methodology results in
a less number of communication (on actual channels) than
broadcast-based communication methodology. With an
increase in a number of conditional nodes, we observed
that the proposed scheduler performance also increases
due to the reason that the task graphs becomes more
dynamic in nature at runtime. Fig. 3 also shows that the
average improvement steadily decreases with an increase
in edge density. This is due to the fact that with an
increase in edge density, the parallelism in the task graph
decreases forcing the tasks to execute in a specific order.
This limits the scope of improvement.

Fig. 4 shows the improvement of schedule length versus
ccr for different numbers of channel availability. We
observed that the point-to-point communication scheduler
provides slightly better schedule length compared to the
broadcast scheduler when a number of channels are less
(zðBÞ ¼ 2). This is because the number of communications
are less in the case of the point-to-point communication
scheduler. We also observed that the proposed methodology
degrades for ccr values beyond 6, giving negligible benefits

over static scheduler. We presume that, for task graphs with
communication cost significantly higher than average
computation cost, a cluster-based solution similar to [12] is
a better choice than the proposed method (Appendix E,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2011.104). Additional results in Appendix D, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.104, indi-
cate that the proposed methodology is suitable for the
limited number of processors 2-6. Finally, Fig. 5 presents the
online scheduler average/worst case/best case performance
improvements over static schedule for the whole simulation
run for task graphs of different sizes.

5.2 Experiments on Random Unconditional Task
Graphs with Variable Execution Nodes

5.2.1 Setup

The randomly generated execution time for each node earlier

is considered as worst-case execution time in this setup. We

define a parameter �ð0 < � < 1Þ as � ¼ BCETvi
WCETvi

8vi 2 V . For

each value of �, we calculated the value of BCET for each

node. Then, at runtime we assigned a random value between

BCET and WCET to each node. It can be noted that if a task

graph has a smaller�, the tasks are likely to be more dynamic

at runtime.

5.2.2 Experiments

We performed similar experiments as explained in the
earlier section with varying � from 0.2 to 0.6. The static
scheduler in this case uses worst case execution time of
nodes for the static schedule generation with online
resource reclaim (since tasks finish earlier). For each graph,
we have taken 500 random instances for the calculation of
average improvement.

5.2.3 Results

Fig. 6 shows the improvement on schedule length versus
edge density for different �. With higher �, the task graph
behaves more like a task graph with deterministic execution
nodes and, hence, limits the scope of improvement. Fig. 7
shows the improvement of schedule length versus ccr for
different numbers of channel availability. Finally, Fig. 8
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Fig. 5. Average/worst case improvement (online over static scheduling
in percent) versus edge density (percent of max edge) jPEj ¼ 3; jV j ¼
100; jCj ¼ 4%.

Fig. 4. Schedule length improvement (online over static scheduling in
percent) versus ccr for different channel numbers zðBÞ (jV j ¼ 200;
jcj ¼ 2% and edge density ¼ 5%).

Fig. 3. Schedule length improvement (online over static scheduling in
percent) versus edge density (percent of max edge) for different number
of conditional nodes jCj (jPEj ¼ 3; zðBÞ ¼ 3; jV j ¼ 100, ccr ¼ 1:0).



presents the online scheduler average/worst case/best case
performance improvements over static schedule for the
whole simulation run for task graphs of different sizes.

5.3 Experiments on Benchmark Task Graphs

In the absence of any publicly available benchmark suites
for stochastic task graphs with communications, we
evaluated the proposed strategy by modifying the bench-
mark task graphs given in [24]. We chose five graphs of
different structures and assigned different � to those tasks.
We found out the optimal static schedule for these five task
graphs by searching the whole solution space. Then, we

simulated the online scheduler and the schedule generated
by the optimal static scheduler for 100 random instances for
each of the five graphs. The result of this experiment is
tabulated in Table 1.

5.4 Computation Time and Overhead Results

The schedulers were simulated on a JAVA virtual Machine
running on a 1.4 GHz Intel Centrino Processor with 1 GB
RAM. The overall schedule times for the static as well as the
online schedulers are tabulated in Table 2. The overhead of
the online scheduler in columns 3 and 4 indicates the global
scheduler event processing time for the entire graph
schedule. It can be noted that the point-to-point commu-
nication scheduler has higher cumulative overhead than the
broadcast communication scheduler as expected. The
cumulative overhead increases as expected with number
of nodes; however, overhead per node typically stays in
the range of microseconds. This overhead is low and
acceptable for coarse-grain tasks, where the execution times
are typically significantly higher. The proposed methodol-
ogy may not be suitable for very fine grain tasks.

6 CONCLUSIONS

This paper presents a novel online strategy for mapping
and scheduling of task graphs comprising tasks with
unpredictable execution behavior. The proposed schedul-
ing strategy schedules tasks to processors at runtime based
on the execution behavior and performs the edge schedul-
ing to handle contention. Experimental results show that
the proposed solution provides better average-schedule-
length at runtime over the static schedulers for task graphs
with unpredictable execution behavior. The algorithm
presented in this paper may be suitably extended for
heterogeneous processor models or models with commu-
nication uncertainty.
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