
KASIA Approach vs. Differential Evolution in

Fuzzy Rule-Based Meta-Schedulers

for Grid Computing

R. P. Prado, S. García-Galán and J. E. Muñoz Expósito

Telecommunication Engineering Department.

University of Jaén. Alfonso X el Sabio, 28 Linares, Jaén. Spain.

Abstract—Many efforts have been made in the last few years
to solve the high-level scheduling problem in Grid computing,
i.e., the efficient resources utilization and allocation of workload
within resources domains. Nowadays, some trends are based on
the consideration of Fuzzy Rule-Based Systems, whose perfor-
mance is critically conditioned to theirs knowledge bases quality.
In this sense, Genetic Algorithms have been extensively used
to obtain such knowledge bases, mainly founded on Pittsburgh
approach. However, new strategies are recently emerging showing
improvement over genetic-based learning methods. In this work,
comparative results of two non-genetic learning strategies derived
from bio-inspired algorithms, Differential Evolution and Particle
Swarm Optimization, are presented for the evolution of fuzzy
rule-based meta-schedulers in Grid computing.

Index Terms—Grid Computing, Scheduling, Fuzzy Rule-Based
Systems, Differential Evolution, Particle Swarm Optimization

I. INTRODUCTION

Grid computing is increasingly emerging as a large-scale

computational framework to solve problems in science, tech-

nology and engineering where traditional distributed systems

are unable to cope with high computational demands [1]. It is

mainly featured by the cooperation of a wide set of heteroge-

neous and geographically distributed resources, interconnected

through high-speed networks. Moreover, resources belong to

different resources domains (RDs) or sites and impose their

own access and sharing constraints [2]. Furthermore, a grid

consists of different RDs, making up a global virtual entity or

Virtual Organization (VO). A long standing problem in Grid

computing is the efficient allocation of jobs to resources or

scheduling which is known to be NP-hard [3]. In this regard,

computational grids are generally described as hierarchical

structures concerning two scheduling levels; the RD and the

VO levels [4], [5]. On the one hand, local schedulers or

local resource managers are responsible for the allocation of

jobs or scheduling within their associated domains. On the

other hand, a meta-scheduler distributes workload among the

different RDs and thus, it conducts the overall scheduling in

the VO.

Several heuristics have been proposed to solve the schedul-

ing problem in the highly demanding and distributed envi-

ronments of computational grids. Heuristics can be broadly

categorized into dynamic and static [6]. The main difference

resides in the number of jobs taken into account at every

scheduling stage or setting up of the objective jobs set.

Static heuristics comprise OLB (Opportunistic Load Balanc-

ing), MET (Minimum Execution Time) and MCT (Minimum

Completion Time) [6], [7]. In addition, representative dy-

namic heuristics are Min-Min, Max-min, RR (Round Robin),

DFPLTF (Dynamic FPLTF) and WQ (Work Queue) [8]. It

must be pointed out that these methods essentially base their

schedules on the estimation of resources performance and

jobs requirements. Nevertheless, in the light of the high

demand for scheduling techniques able to satisfy complex QoS

criteria, alternative methodologies such as adaptive strategies

[9], are emerging. As discussed in [10], the grid system state

must be born in mind by a scheduling strategy in order

to be able to offer QoS demands. In this sense, adaptive

scheduling strategies propose the prevention of the grid system

performance degradation taking into account the current and

future grid states at every schedule. However, given the high

dynamism, changing behaviour and inherent uncertainty of

the grid state, a precise grid state characterization cannot be

provided. Thus, new approaches are focused on the application

of mechanisms able to tolerate the noisy and imprecise grid

systems information. In this regard, the role of Fuzzy Rule-

Based Systems (FRBSs) must be underlined.

FRBSs are expert systems increasingly attracting the grid

research community attention to solve the scheduling problem.

This is mainly due to their ability to cope with uncertain

information and simulation of human reasoning [11], [12].

However, given the high dependence of FRBSs performance

with the quality of theirs knowledge bases (KBs), the learning

problem in fuzzy rule-based schedulers emerges as a critical

issue. It must be noted that the direct consideration of experts

knowledge is not feasible in the great majority of application

fields of FRBSs and thus, an automatic acquisition or learning

of KBs must generally be born in mind. Many learning

strategies for the acquisition of fuzzy rules can be found

in literature. Genetics Algorithms (GAs) are evolutionary

strategies which have shown their efficiency in their adaptation

to the learning of KBs [13], [14], [15]. To be precise, two

acknowledged strategies must be indicated, namely, Pittsburgh

[16] and Michigan approaches [17]. Nevertheless, new bio-

inspired learning strategies are emerging for the evolution of

fuzzy rules showing a more efficient performance in its appli-

cation to meta-schedulers in Grid computing. In this work,

comparatives results of the adaptation of two non-genetic

978-1-61284-050-5/11/$26.00 ©2011 IEEE

���������	
����

���������	
�����
���������	
�����

�	���

�	
��
�	���

�	���

�	
��

�	��

�	���

�	��

�	���

�	�

�	

���	�������

���	������

���	�������

�	�

FUZZIFICATION

FUZZY ENGINE

DEFUZZIFICATION

FUZZY RULE-BASED SCHEDULI�G SYSTEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

SALIDA

D
e
g
re
e
 o
f
m
e
m
b
e
rs
h
ip

MUYBAJO BAJO MEDIO ALTO MUYALTO

0 0. 1 0.2 0.3 0.4 0.5 0. 6 0.7 0.8 0. 9 1

0

0.2

0.4

0.6

0.8

1

RECURSOS

D
eg

re
e
 o
f
m

em
be

rs
h
ip

BAJO MEDIO ALTO

0 0. 1 0.2 0.3 0.4 0.5 0. 6 0.7 0.8 0. 9 1

0

0.2

0.4

0.6

0.8

1

RECURSOS

D
eg

re
e

of
 m

e
m
b
er
s
hi
p

BAJO MEDIO ALTO

0 0. 1 0.2 0.3 0.4 0.5 0. 6 0.7 0.8 0. 9 1

0

0.2

0.4

0.6

0.8

1

RECURSOS

D
eg

re
e

of
 m

e
m
b
er
s
hi
p

BAJO MEDIO ALTO

0 0. 1 0.2 0.3 0.4 0.5 0. 6 0.7 0.8 0. 9 1

0

0.2

0.4

0.6

0.8

1

RECURSOS

D
eg

re
e

of
 m

e
m
b
er
s
hi
p

BAJO MEDIO ALTO

0 0. 1 0.2 0.3 0.4 0.5 0. 6 0.7 0.8 0. 9 1

0

0.2

0.4

0.6

0.8

1

RECURSOS

D
eg

re
e
 o
f
m

em
be

rs
h
ip

BAJO MEDIO ALTO

0 0. 1 0.2 0.3 0.4 0.5 0. 6 0.7 0.8 0. 9 1

0

0.2

0.4

0.6

0.8

1

RECURSOS

D
eg

re
e
 o
f
m

em
be

rs
h
ip

BAJO MEDIO ALTO

0 0. 1 0.2 0.3 0.4 0.5 0. 6 0.7 0.8 0. 9 1

0

0.2

0.4

0.6

0.8

1

RECURSOS

D
eg

re
e
 o
f
m

em
be

rs
h
ip

BAJO MEDIO ALTO

yo
RM
RT

FPE
PT

PS
RS
RE

KB

JOBS QUEUE

Figure 1. Fuzzy meta-scheduler structure within grid environment.

algorithms, i.e., Differential Evolution (DE) [18] and Particle

Swarm Optimization (PSO) [19], to knowledge acquisition

in fuzzy rule-based schedulers [20], DE-learning [21] and

Knowledge Acquisition with a Swarm Intelligence Approach

(KASIA) [22] are presented. It is shown that these strategies

results improve those of Pittsburgh approach regarding final

result and convergence behaviour. Comparing these learning

strategies with Pittsburgh approach is specially interesting

since they use a similar encoding of the fuzzy rule bases

and they consider the evaluation of a fixed set of rule bases

in every iteration. Hence, not only can these strategies be

fairly compared in terms of final accuracy considering the

same overall computational effort but also, convergence can

be compared step by step in every iteration or generation

taking into account an equal number of rule bases evaluations.

Moreover, given the fact that a fixed size for the knowledge

bases, i.e., the same number of fuzzy rules, are born in mind

in both DE-learning and KASIA strategies, the evaluation of a

single rule base requires the same number of operations.

The rest of the paper is organized as follows. First, Section

II describes the structure of the FRBS applied to the scheduling

problem in Grid computing. The proposed learning strategies

for the fuzzy rule-based meta-scheduler are presented in

Section III. In Section IV simulation and comparative results

are presented. Finally, Section V concludes the paper.

II. FUZZY META-SCHEDULER STRUCTURE

The knowledge-based meta-scheduler structure and organi-

zation within the grid environment are illustrated in Figure

1. The general schema of FRBSs can be observed for the

meta-scheduler, i.e., fuzzification, inference and defuzzification

systems and associated knowledge base. Hence, the basic

operation of the meta-scheduler can be described as the joint

operation of these systems and it is summarized as follows.

At every scheduling step, the meta-scheduler examines all the

available RD state information provided by local schedulers

and it features such states through a limited and normalized

collection of variables as shown in Table I. Then, the meta-

scheduler starts the process of translating the RDs state fuzzy

characterization into a RD selector index that represents the

suitability of the considered RD to be selected for the next

schedule. To be precise, the fuzzification system is in charge

of providing a fuzzy set from the crisp value obtained for each

RD state variable. This way, the retrieved RD state information

is associated to a linguistic label considering its inherent

uncertainty. Next, in the inference system, a fuzzy output is ob-

tained through the application of the system knowledge, in the

form of “IF-THEN” rules, to the input fuzzy characterization.

Finally, a crisp value that corresponds to a fuzzy RD selector

is inferred through the defuzzification system. Specifically,

“center of gravity” is taken into account as defuzzification

strategy. Thus, as described, the workload allocation among

RDs is founded of the simultaneous consideration of a fuzzy

grid state characterization and acquired knowledge of the fuzzy

meta-scheduler.

Moreover, it must be mentioned that the choice of these

variables is based on the achievement of an adaptive schedul-

ing [9]. Also, the considered membership functions for grid

state are depicted in Figure 2. As shown, input features

are represented by three gaussian-shaped sets corresponding

to low, medium and high linguistic labels, while the output

variable is described by five gaussian-shaped sets, i.e. very

low, low, medium high and very high fuzzy sets. Considering

the associated negation sets, null set for the seven features

and output and connectors, this leads the learning system

to contemplate (77-1)·11·2 (i.e., 18,117,924) different rules.

It must be mentioned that a larger number of sets may be

considered to provide a more complete characterization of

the grid system state. However, with the aim of avoiding the

expansion of the search space and the consequent complexity

of the learning process, this selection attempts to achieve a

balance between a good characterization of the fuzzy system

state and computational effort of the knowledge acquisition

processes.

III. NON-GENETIC KNOWLEDGE ACQUISITION FOR

FUZZY RULE-BASED META-SCHEDULERS

Next, the adaptation of two optimization strategies to knowl-

edge acquisition in FRBSs based on DE and PSO, DE-learning

[21] and KASIA [22], are presented. As it is shown, these

strategies consider each individual of the population as a whole

rule base and they present many similarities in terms of rule

bases encoding that make their features alike. Furthermore,

the size of the rule bases considered by these two learning

strategies is fixed through the whole learning process what

allows a fair comparison regarding computational effort.

A. Differential Evolution Learning

The adaptation of DE to knowledge acquisition in fuzzy

rule-based meta-schedulers [21] follows the general operation

of evolutionary algorithms, i.e., initialization, mutation,

crossover and selection. First, in the initialization stage,

the encoding of rules and rule bases to be evolved must

be specified. In this approach, every rule is represented by

antecedents (corresponding to n input features), consequent

and connectives of “IF-THEN” Mamdani rules [23]. Hence,

founded on the considered rules encoding, population

individuals have the form:

RBi
g =









xi
1,1,g xi

1,2,g . . . xi
1,n+2,g

xi
2,1,g xi

2,2,g . . . xi
2,n+2,g

.
xi

m,1,g xi
m,2,g . . . xi

m,n+2,g









, i = 1, 2, ..., N.

(1)

where m indicates the number of fuzzy rules and g denotes

the generation number. As shown, canonical DE algorithm

has been modified to consider RBs as candidate individuals

where every row represents the codification of a single fuzzy

rule. This way, parameters vectors of the original algorithm

are extended to [n + 2, m] dimension matrices describing

whole sets of rules. Specifically, for the proposed scheduler

setting, taking into account seven input variables for RD

state characterization (see Table I), rule connector and one

output variable, the number of rules is n + 2 = 9. Moreover,

for every rule base, RBi, each rule component is randomly

initialized bearing in mind each individual lower and upper

limits for antecedents, consequents and connectives of rules:

xi
j,k,g ∈ [−NFin, NFin] , j ∈ {1, 2, ..., m}, k ∈ {1, 2, ..., n}

(2)

xi
j,k,g ∈ [−NFout, NFout] , j ∈ {1, 2, ..., m}, k = n+1 (3)

xi
j,k,g ∈ {1, 2}, j ∈ {1, 2, ..., m}, k = n + 2 (4)

with NFin and NFout the number of input and output

fuzzy sets, respectively. Also, two connectives are considered

(“AND” and “OR”, encoded by 1 and 2, respectively). Note

that rules weights are equal to unity in this approach and thus

they do not influence the rules relevance.

Next, after population initialization, every individual RBi
g

is subject to mutation, crossover and selection procedures.

First, mutation is used in a such a way that local optimums

are avoided as it is generally considered in evolutionary

algorithms. Specifically, in this approach, for every target

base RBi
g, three individuals, RBr1

g , RBr2

g and RBr3

g are

randomly selected in a way that r1, r2 and r3 are different to

i and the weighted difference of RBr2

g and RBr3

g is added to

the first rule base RBr1

g :

DBi
g+1 = RBr1

g + F (RBr2

g − RBr3

g) (5)

where F denotes the mutation factor and DBi
g+1 indicates

the donor base for RBi
g . It must be mentioned that rules

elements of auxiliary bases such as donor bases, are subject

to the closer bound of their associated search space shown

in Eqs. 2, 3 and 4 in order to avoid invalid chromosomes.

Next, a crossover stage is entailed. In this stage, the trial base

TBi
g+1 is obtained though the crossing of rules elements

of both target, RBi
g and donor bases, DBi

g+1. To be

precise, components of DBi
g+1 are included to TBi

g+1 with

probability CR:

TBi
j,k,g+1 =

{

DBi
j,k,g+1 if randi

j,k ≤ CR

RBi
j,k,g if randi

j,k > CR
(6)

with j ∈ {1, 2, ..., NR}, k ∈ {1, 2, ..., D}. It must be

mentioned that a uniform distribution is considered for

crossover in this approach. Finally, in the selection process,

Table I
INPUTS FEATURES FOR THE FUZZY META-SCHEDULER.

Feature Description

Number of free processing elements (FPE) number of free processing element within RDi.

Previous Tardiness (PT) Sum of tardiness of all finished jobs.

Resource Makespan (RM) Current makespan for RDi.

Resource Tardiness (RT) Current tardiness of jobs within RDi.

Previous Score (PS) Previous deadline score of already finished jobs in RDi.

Resource Score (RS) number of non delayed jobs so far in RDi.

Resources In Execution (RE) number of resources currently executing jobs within RDi.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

RECURSOS

D
e
g
re

e
 o

f
m

e
m

b
e
rs

h
ip

BAJO MEDIO ALTO������ ����

���

��

��

��

��

��

��

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

SALIDA

D
e
g
re

e
 o

f
m

e
m

b
e
rs

h
ip

MUYBAJO BAJO MEDIO ALTO MUYALTO��	
���
�� ���� ��	
�������
��

��	�
�
�
��� ���
��

Figure 2. membership functions for the meta-scheduler inputs and output.

next generation population of rule bases are selected. With

this aim, both target bases and trial bases are tested and those

obtaining a better performance become members of the next

population:

RBi
g+1 =

{

TBi
g+1 if f(TBi

g+1) ≤ f(RBi
g)

RBi
g othewise

(7)

The general procedure of the algorithm, i.e., mutation,

crossover and selection, is iterated until the stopping condi-

tion is satisfied. Specifically, the number of generations, G,

is proposed as stopping condition. Note other versions for

DE, considering exponential crossover or x/rand differential

variation [18], are possible. However, this approach proposes

the use of canonical DE strategy for rules evolution.

B. KASIA approach

KASIA (Knowledge Acquisition with a Swarm Intelligence

Approach) [22] is the adaptation of PSO to the learning of

rule bases in FRBSs. In this approach, each individual or

particle, Pi, represents a whole RB of the population so-called

swarm and the aim is to achieve the optimum location for

particles or equivalently, RBs with the highest quality. In

other words, the rule set providing the best performance

in terms of a selected function fitness f (desirable for the

whole operation of the system) is sought. Hence, every rule

base, RBi, or particle Pi in KASIA approach is represented as

Pi =









ai
1,1 ai

1,2 . . . ai
1,n bi

1 ci
1

ai
2,1 ai

2,2 . . . ai
2,n bi

2 ci
2

.
ai

m,1 ai
m,2 . . . ai

m,n bi
m ci

m









(8)

with every row denoting a fuzzy rule and n, m indicating

the number of input features and rules, respectively. As far

as rules representation is concerned, antecedents, ai
j,k, are

encoded as entire values in the interval

ai
j,k ∈ [−NFin, NFin] , j ∈ {1, 2, ..., m}, k ∈ {1, 2, ..., n}

(9)

where NFin indicates the number of fuzzy sets for input

variable j, corresponding to three in the proposed schema,

see Figure 2. Further, an analog reasoning can be followed

for consequents bi
j with NFout the number of output fuzzy

sets

bi
j ∈ [−NFout, NFout] , j ∈ {1, 2, ..., m} (10)

NFin, NFout ∈ N (11)

Also, connectives are encoded considering two values; AND

connective is denoted as “1” and “2” indicates the OR operator,

ci
j ∈ {1, 2} (12)

In the initial stage of KASIA algorithm, each particle

or RB, Pi, and an associated velocity, Vi, are randomly

generated. In this algorithm, velocity is considered for the

updating of the particles position during the search process

and thus, velocity matrix drives each RB modification,

Vi =









vi
1,1 vi

1,2 . . . vi
1,n vi

1,n+1 vi
1,n+2

vi
2,1 vi

2,2 . . . vi
2,n vi

2,n+1 vi
2,n+2

.
vi

m,1 vi
m,2 . . . vi

m,n vi
m,n+1 vi

m,n+2









(13)

vi
j,k ∈ [Vmin, Vmax] , j ∈ {1, 2, ..., m}, k ∈ {1, 2, ..., n + 2}

(14)

where Vmin and Vmax indicate the limits for velocity. Some

comments must be made about Vmin and Vmax. Every

particle in this learning approach updates its position founded

of its own inertia, own best experience and global social

experience in the optimization process. Furthermore, particles

move in the search space in a constrained range [−s, s].
Specifically, the search space includes three subsections,

as shown in particle or RB formulation, Eq. 8, regarding

antecedent, consequent and connector search spaces. This

way, the search space is defined by Eq. 9, Eq. 10 and Eq.

12 for each element of RBs, respectively. Moreover, with the

final goal of effectively driving particles in the search space,

the maximum range for velocity is bounded to a range [Vmin,

Vmax], or taken symmetry into account, [−Vmax, Vmax]. As

stated in [24], explosion in PSO strategies has generally been

controlled through the consideration of a V max parameter,

which constraints velocity. Thus, the following is born in

mind for particles velocity [11]:

vi
j,k = sign(vi

j,k,)min(|vi
j,k|, Vmax) (15)

Vmax is generally defined as p × s, with 0.1 ≤ p ≤ 1.0.

To be precise, in this work, p is selected in such a way that

Vmax is the unity, i.e., p = 1/3 for antecedents, p = 1/5 for

consequents and p = 1/2 for antecedents.

Hence, at every iteration t + 1, a performance indicator or

fitness is obtained for every particle of the swarm and the

velocity matrix is updated as follows

Vi(t + 1) = w ⊗ Vi(t) ⊕ (c1 ∗ r1) ⊗ (P#(t) ⊖ Pi(t))

⊕(c2 ∗ r2) ⊗ (P ∗(t)⊖Pi(t)) (16)

where ⊗ and ⊕ indicate the multiplication and sum of

matrices, respectively, P#(t) denotes the best knowledge

(in terms of considered fitness f) for particle Pi and P ∗(t)
represents the best knowledge achieved for the whole swarm

up to the considered iteration. Thereby, each particle Pi

is updated in regard of the present value or inertia, and

the global and local best value reached though the swarm

optimization and this process is iterated until the stopping

condition is met

Pi(t + 1) = P (t)i ⊕ Vi(t + 1) (17)

As it is found in literature with respect to FRBSs knowledge

acquisition in large-scale computing environments [25], the

specification of the stopping condition for bio-inspired

algorithms is generally founded on statistical analysis of the

system performance in the specific environment. In this work,

the number of iterations is suggested as stopping condition.

In addition, given the fact that antecedents, consequents and

connectives may violate the search space limits as a results

of location updating, a set of constrains are imposed for these

components at the end of every iteration with the aim that

RBs coherence is kept as in DE strategy i.e., prevention of

invalid chromosomes,

ai
j,k =

{

NFin if ai
j,k > NFin

−NFin if ai
j,k < −NFin

(18)

bi
j,k =

{

NFout if bi
j,k > NFout

−NFout if bi
j,k < −NFout

(19)

ci
j =

{

1 if ci
j < 1

2 if ci
j > 2

(20)

Moreover, two remarks must be born in mind. On the one

hand, rules presenting null antecedents are considered to be

non consistent (i.e., a controller output is provided regardless

of the grid system state) and thus, they must be initialized in

case they are obtained in the updating process

if

n
∑

k=1

ai
j,k = 0 ⇒ init ai

j (21)

On the other hand, it is to be noted that KASIA algorithm,

as it also happens with DE-learning, does not lead the fuzzy

sets modification. Thereby, rules interpretability is not altered

in the knowledge acquisition process.

Finally, it is important to specify the associated

computational effort for both strategies in terms of number

Table II
METACENTRUM-BASED GRID STRUCTURE.

Cluster CPU speed (MHz) Main memory size (KB) CPU type Operating system number of machines Total number of CPUs

cluster_0 1500 48,000,000 Itanium2 Linux 1 8

cluster_1 2200 32,000,000 Opteron Linux 1 16

cluster_2 3200 1,009,000 Xeon Linux 10 10

cluster_3 2600 131,182,840 Opteron Linux 5 80

cluster_4 1600 1,005,000 AthlonMP Linux 16 32

cluster_5 2400 1,048,576 Xeon Linux 32 64

cluster_6 2659 15,565,060 Xeon Linux 36 148

cluster_7 3056 2,021,000 Xeon Linux 35 70

cluster_8 1600 1,024,000 Opteron Linux 10 20

cluster_9 2400 4,000,000 Opteron Linux 3 6

cluster_10 2000 4,000,000 Opteron Linux 23 92

cluster_11 3000 4,546,800 Xeon Linux 19 152

cluster_12 2660 27,343,000 Xeon Linux 8 64

cluster_13 2360 15,200,000 Xeon Linux 11 44

of RB evaluations. Computational effort for DE-learning can

be formulated as

CEDE = I ∗ numgen (22)

where I denotes the number of candidates or individuals

in the DE population and numgen represents the number

of generations. On the other hand, computational effort for

KASIA strategy can be denoted as

CEKASIA = NP ∗ numiter (23)

with NP the number of particles, as introduced above, and

numiter the number of iterations for swarm updating. Hence,

considering the associated encoding for every RB and taking

the same number of individuals for the population and swarm

for DE-learning and KASIA, respectively, strategies can be

fairly compared in terms of overall and step by step compu-

tational effort.

IV. SIMULATION RESULTS

The proposed non-genetic knowledge acquisition strategies

for the learning of meta-schedulers in Grid computing

are tested with Alea [26]. Alea is a GridSim-based

simulation software for the study of scheduling strategies

in computational grids. To be precise, the grid scenario

and workload traces are obtained from Czech National

Grid Infrastructure Metacentrum [27]. The final aim of

CESNET (operator of academic network of the Czech

Republic -National Research and Education Network, NREN)

project, Metacentrum, is to cooperate in the achievement a

high-performance computing framework by the sharing and

cooperation of a large set of institutions resources all around

the world. Specifically, the grid scenario consists of 210

machines, including 806 heterogeneous CPUs (i.e., Opteron

and Xeon, 1500-3200 MHz), running Linux and distributed

in 14 RDs, see II. On the other hand, jobs are retrieved from

Metacentrum traces from January 2009 (available at [27]).

Workload traces provide relevant information about jobs such

0 10 20 30 40 50 60 70 80 90 100
1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78
x 10

6

ITERATION

F
IT

N
E

S
S

 (
s
)

KASIA

DIFFERENTIAL EVOLUTION

PITTSBURGH

Figure 3. Convergence comparative results of KASIA and DE.

as job identifier or job ID, corresponding job owner priority,

collection of properties to be satisfied in the end machine

(i.e., number of CPU, CPU type, operating system, etc.) or

job arrival time. Precisely, 2000 and 2400 jobs are involved in

learning and validation scenarios, respectively. Furthermore,

the dynamism of the grid resources behaviour considering

aspects such as reservation, failure or availability times are

retrieved from Maintenance & Reservation traces. Also,

makespan [9] is suggested as training index (i.e., objective

function) for the knowledge acquisition process,

minSi∈Sched{maxj∈JTj} (24)

with Tj the finalization time for job Jj , Sched all the possible

schedules and J the set of considered workload jobs.

Regarding the implementation considered for each learning

method to compare results, DE is configured with binomial

crossover with probability CR=0.5, mutation factor F=0.8 with

1/rand differential variation, population size I = 18 and RB

size, RBsize = 10 rules. On the other hand, KASIA is

Table III
SIMULATION RESULTS FOR 30 SIMULATIONS IN GRID METACENTRUM. TRAINING FITNESS MAKESPAN (S).

Results Average Standard Deviation Confidence Interval (95%)

KASIA 1630479.5 36778.7 1617318.41, 1643640.50

Differential Evolution 1641823.2 22234.7 1633520.70, 1650125.85

GA-Pittsburgh 1667586.2 19757.8 1660515.96, 1674656.43

Table IV
RESULTS SUMMARIZATION RELATED TO PITTSBURGH APPROACH IN

VALIDATION SCENARIO.

Approach Configuration % Improvement

Differential evolution NP=18, Rules=10 1,10

KASIA NP=18, Rules=10 1,58

configured with ω = 0.9, d1 = 2, d2 = 2, NP = 18 and

RBsize = 10. Further, Pittsburgh approach is set up with

selection rate λ = 0.9 and population size IP = 20, with

the same RB size as the other bio-inspired strategies. In these

conditions, the comparison in terms of computational cost

is fair since the same number of particles or individuals is

considered for every method and each knowledge base bears

in mind the same number of rules.

In Figure 3, convergence behaviour of the different strate-

gies during the learning processes is presented. Curves rep-

resent the best RB associated fitness at every iteration (30

simulations on average). It is illustrated that KASIA initial

convergence behavior does not show any relevant difference

in the stating iterations (approximately up to iteration 10) in

comparison to DE. Nevertheless, from this point on, a faster

convergence for KASIA learning strategy is observed. It must

be noted that a faster convergence is translated into a more

reduced computational effort as it can be derived from Eqs. 22

and 23. Also, statistics of the learning data are shown in Table

III. Furthermore, in Table IV, validation results considering the

relative improvement of the presented learning strategies with

respect to the genetic knowledge acquisition with better results

in fuzzy rule-based meta-schedulers, i.e., Pittsburgh approach,

are shown. As it can be observed, DE-based strategy improves

Pittsburgh approach by 1.10% whereas KASIA outperforms

the genetic strategy by 1.58%. Hence, the PSO-based, KASIA,

strategy presents both better performance in terms of conver-

gence behaviour and accuracy with respect to DE-learning

strategy and requiring the same step by step computational

effort. Finally, Tables V and VI show best rule bases obtained

by DE and KASIA strategies, respectively.

V. CONCLUSIONS

The design of efficient scheduling strategies is a major issue

to harness the high potential of grids. Given the inherent

changing behaviour of grid environments, dynamics models

are progressively calling grids research community attention.

Fuzzy rule-based meta-schedulers are expert systems founded

on the fuzzy characterization of the grid system state and

the application of expert knowledge to provide an efficient

scheduling. However, due to the critical importance of the

quality of the expert knowledge and the way this knowledge

is acquired, learning strategies arise as one of the major

challenges of these systems. In this work, scheduling results

obtained with fuzzy rule-based meta-schedulers considering

two non-genetic automatic learning strategies have been an-

alyzed. On the one hand, an adaptation of DE to knowledge

acquisition and on the other hand, a new learning strategy

based on PSO (KASIA). Both strategies have proved their

capability to acquire knowledge in FRBSs that are adapted to

meta-schedulers in a grid system using makespan as criteria to

measure the offered QoS to users. To be precise, the obtained

results using both methodologies improve those achieved with

classical strategies based on genetic algorithms regarding the

same number of rule bases evaluations in every iteration.

Furthermore, results show that KASIA outperforms DE by

0.5% and can faster reach convergence with the consequent

reduction in computational effort.

ACKNOWLEDGMENT

This work has been financially supported by the Andalusian

Government (Research Project P06-SEJ-01694).

REFERENCES

[1] I. Foster and C. Kesselman, “The grid: Blueprint for a new computing
infrastructure,” USA, 2004.

[2] J. M. Marín and S. B. Cámara, Las Tecnologías Grid de la Informa-

ción como Nueva Herramienta Empresarial. Jaén (España): Septem
Ediciones, 2008.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[4] K. Christodoulopoulos, V. Sourlas, I. Mpakolas, and E. Varvarigos, “A
comparison of centralized and distributed meta-scheduling architectures
for computation and communication tasks in grid networks,” Computer
Communications, vol. 32, no. 7-10, pp. 1172 – 1184, 2009.

[5] S. Phatanapherom, P. Uthayopas, and V. Kachitvichyanukul, “Dynamic
scheduling ii: fast simulation model for grid scheduling using hypersim,”
in WSC ’03: Proceedings of the 35th conference on Winter simulation.
Winter Simulation Conference, 2003, pp. 1494–1500.

[6] L. Tseng, Y. Chin, and S. Wang, “The anatomy study of high perfor-
mance task scheduling algorithm for grid computing system,” Computer

Standards and Interfaces, vol. 31, no. 4, pp. 713 – 722, 2009.

[7] H. S. T.D. Braun and N. Beck, “A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous distributed
computing systems,” Journal of Parallel and Distributed Computing,
vol. 61, pp. 810–837, 2001.

[8] N. Fujimoto and K. Hagihara, “A comparison among grid scheduling
algorithms for independent coarse-grained tasks,” in SAINT-W ’04:

Proceedings of the 2004 Symposium on Applications and the Internet-

Workshops (SAINT 2004 Workshops). Washington, DC, USA: IEEE
Computer Society, 2004, p. 674.

[9] F. Xhafa and A. Abraham, “Meta-heuristics for grid scheduling prob-
lems,” Metaheuristics for Scheduling: Distributed Computing Environ-
ments, Studies in Computational Intelligence, Springer Verlag, Germany,

ISBN, pp. 978–3, 2008.

Table V
OBTAINED RB WITH DE STRATEGY.

Rule Base for DE

1. If (FPE is HIGH) and (PT is HIGH) and (RM is MIDDLE) and (RT is MIDDLE) and (RS is not HIGH) and (RE is HIGH) then (OUTPUT is VERYHIGH) (1)

2. If (FPE is HIGH) or (PT is HIGH) or (RM is LOW) or (RT is HIGH) or (PS is HIGH) or (RS is HIGH) or (RE is HIGH) then (OUTPUT is VERYHIGH) (1)

3. If (PT is HIGH) or (RM is HIGH) or (RT is not HIGH) or (PS is HIGH) or (RS is not LOW) or (RE is HIGH) then (OUTPUT is VERYHIGH) (1)

4. If (FPE is not MIDDLE) and (PT is not LOW) and (RM is LOW) and (PS is HIGH) and (RS is HIGH) and (RE is HIGH) then (OUTPUT is LOW) (1)

5. If (FPE is HIGH) or (RT is not HIGH) or (PS is not MIDDLE) then (OUTPUT is not VERYLOW) (1)

6. If (FPE is MIDDLE) and (PT is HIGH) and (RT is LOW) and (RE is HIGH) then (OUTPUT is not VERYHIGH) (1)

7. If (FPE is HIGH) and (PT is LOW) and (RT is HIGH) and (PS is not LOW) and (RE is HIGH) then (OUTPUT is VERYHIGH) (1)

8. If (FPE is not LOW) or (PT is LOW) or (RM is HIGH) or (PS is HIGH) or (RS is LOW) or (RE is MIDDLE) then (OUTPUT is VERYHIGH) (1)

9. If (FPE is HIGH) or (PT is HIGH) or (RT is not MIDDLE) or (PS is HIGH) or (RS is HIGH) or (RE is not HIGH) then (OUTPUT is VERYLOW) (1)

10. If (FPE is not HIGH) or (RM is HIGH) or (RT is not HIGH) or (PS is LOW) or (RE is not MIDDLE) then (OUTPUT is VERYHIGH) (1)

Table VI
OBTAINED RB WITH KASIA STRATEGY.

Rule Base for KASIA

1. If (FPE is not LOW) and (PT is not HIGH) and (RT is not MIDDLE) and (PS is not HIGH) and (RS is not HIGH) and (RE is not HIGH) then (OUTPUT is not HIGH) (1)

2. If (PT is not HIGH) and (RM is not LOW) and (RT is not HIGH) and (PS is not HIGH) and (RS is not HIGH) and (RE is not MIDDLE) then (OUTPUT is not LOW) (1)

3. If (FPE is not HIGH) and (PT is not HIGH) and (RM is not HIGH) and (RT is not HIGH) and (PS is not LOW) and (RS is not HIGH) and (RE is not LOW) then (OUTPUT is VERYLOW) (1)

4. If (FPE is not HIGH) and (PT is not LOW) and (RM is not HIGH) and (RT is not MIDDLE) and (PS is MIDDLE) and (RS is not HIGH) and (RE is not MIDDLE) then (OUTPUT is not LOW) (1)

5. If (FPE is not HIGH) and (PT is not HIGH) and (RM is not HIGH) and (RT is not HIGH) and (PS is not HIGH) and (RS is not MIDDLE) and (RE is MIDDLE) then (OUTPUT is not VERYHIGH) (1)

6. If (FPE is not MIDDLE) and (RM is not MIDDLE) and (RT is not HIGH) and (PS is not HIGH) and (RS is LOW) and (RE is not HIGH) then (OUTPUT is not MIDDLE) (1)

7. If (FPE is not LOW) and (PT is not MIDDLE) and (RM is not LOW) and (PS is not HIGH) and (RS is not HIGH) and (RE is not HIGH) then (OUTPUT is not VERYLOW) (1)

8. If (FPE is not LOW) and (PT is LOW) and (RM is not LOW) and (RT is not MIDDLE) and (PS is not HIGH) and (RE is not HIGH) then (OUTPUT is not VERYLOW) (1)

9. If (FPE is not HIGH) and (PT is not MIDDLE) and (RM is not HIGH) and (RT is not HIGH) and (PS is not HIGH) and (RS is not HIGH) and (RE is not LOW) then (OUTPUT is VERYLOW) (1)

10. If (FPE is not HIGH) and (PT is not HIGH) and (RM is not MIDDLE) and (RT is not MIDDLE) and (PS is not HIGH) and (RS is not LOW) and (RE is not HIGH) then (OUTPUT is not LOW) (1)

[10] D. Klusacek, “Dealing with Uncertainties in Grids through the Event-
based Scheduling Approach,” in Fourth Doctoral Workshop on Math-
ematical and Engineering Methods in Computer Science (MEMICS

2008), vol. 1. Ing. Zdeněk Novotnỳ CSc., Ondráčkova 105, 628 00
Brno Further information, 2008, pp. 978–80.

[11] H. Liu, A. Abraham, and A. E. Hassanien, “Scheduling jobs on com-
putational grids using a fuzzy particle swarm optimization algorithm,”
Future Gener. Comput. Syst., vol. In Press, Corrected Proof, pp. –, 2009.

[12] J. Zhou, K.-M. Yu, C.-H. Chou, L.-A. Yang, and Z.-J. Luo, “A dynamic
resource broker and fuzzy logic based scheduling algorithm in grid
environment,” in ICANNGA ’07: Proceedings of the 8th international

conference on Adaptive and Natural Computing Algorithms, Part I.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 604–613.

[13] O. Cordon, F. Herrera, and P. Villar, “Generating the knowledge base
of a fuzzy rule-based system by the genetic learning of the data base,”
Fuzzy Systems, IEEE Transactions on, vol. 9, no. 4, pp. 667–674, Aug
2001.

[14] S. Garcia, A. Fernandez, J. Luengo, and F. Herrera, “A study of statis-
tical techniques and performance measures for genetics-based machine
learning: accuracy and interpretability,” Soft Comput., vol. 13, no. 10,
pp. 959–977, 2009.

[15] C. Franke, F. Hoffmann, J. Lepping, and U. Schwiegelshohn, “Devel-
opment of scheduling strategies with genetic fuzzy systems,” Appl. Soft

Comput., vol. 8, no. 1, pp. 706–721, 2008.

[16] S. F. Smith, “A learning system based on genetic adaptive algorithms,”
Ph.D. dissertation, Pittsburgh, PA, USA, 1980.

[17] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems and
genetic algorithms,” Artif. Intell., vol. 40, no. 1-3, pp. 235–282, 1989.

[18] R. Storn and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” J. of Global

Optimization, vol. 11, no. 4, pp. 341–359, 1996.

[19] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE In-

ternational Conference on Neural Networks, 1995. Proceedings., vol. 4,
1995.

[20] R. P. Prado, S. G. Galán, A. J. Yuste, J. E. M. Expósito, A. J. S. Santiago,
and S. Bruque, “Evolutionary fuzzy scheduler for grid computing,” ser.
Lecture Notes in Computer Science, vol. 5517. Springer, 2009, pp.
286–293.

[21] R. P. Prado, S. García-Galán, J. E. M. Expósito, A. J. Yuste, and
S. Bruque, “Learning of fuzzy rule-based meta.schedulers for grid
computing with differential evolution,” in IPMU(1), 2010, pp. 751–760.

[22] R. P. Prado, S. García-Galán, J. E. Muñoz Expósito, and A. J. Yuste,
“Knowledge acquisition in fuzzy rule based systems with particle swarm
optimization,” Fuzzy Systems, IEEE Transactions on, vol. 18, no. 6, pp.
1083 –1097, 2010.

[23] E. H. Mamdani and Others, “Application of fuzzy algorithms for control
of simple dynamic plant,” Procedings of IEEE, vol. 121, no. 12, pp.
1585–1588, 1974.

[24] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and
convergence in a multidimensional complex space,” IEEE transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[25] C. Franke, J. Lepping, and U. Schwiegelshohn, “On advantages of
scheduling using genetic fuzzy systems,” in JSSPP’06: Proceedings

of the 12th international conference on Job scheduling strategies for
parallel processing. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
68–93.

[26] D. Klusacek, L. Matyska, and H. Rudova, “Alea - grid scheduling sim-
ulation environment,” in Parallel Processing and Applied Mathematics,
ser. Lecture Notes in Computer Science, R. Wyrzykowski, J. Dongarra,
K. Karczewski, and J. Wasniewski, Eds., vol. 4967, intel; Microsoft;
IBM; Action SA; SIAM. Heidelberger Platz 3, D-14197 Berlin,
Germany: Springer-Verlag Berlin, 2008, Proceedings Paper, pp. 1029–
1038, 7th International Conference on Parallel Processing and Applied
Mathematics, Gdansk, Poland, Sep 09-12, 2007.

[27] C. N. G. Infrastructure, “Metacentrum data sets,
http://www.fi.muni.cz/˜xklusac/index.php?page= meta2009,” 2009.
[Online]. Available: http://www.fi.muni.cz/˜xklusac/index.php?page=
meta2009

