Linear algebra Systems of linear equations - 2 of 2

Jesús García Díaz

CONAHCYT INAOE

July 9 2024

c - c - c			
	NARC	T I IIV	

2

1/40

< □ > < □ > < □ > < □ > < □ >

Contents

2 Homogeneous systems of equations

Onsingular matrices

2

イロト イヨト イヨト イヨト

Bibliography

イロト イヨト イヨト イヨト

http://linear.ups.edu/

100	 	A O E \
	7 I INI	$\Delta (1) = 1$

2

2

イロト イヨト イヨト イヨト

A system of linear equations is **consistent** if it has at least one solution. Otherwise, the system is called **inconsistent**.

< □ > < □ > < □ > < □ > < □ >

A system of linear equations is **consistent** if it has at least one solution. Otherwise, the system is called **inconsistent**.

So, given a system of linear equations, we would like to know if it is consistent (or inconsistent) by analyzing its reduced row-echelon form.

イロト イヨト イヨト

Notation

Let us use D and F to denote the indices of the columns. Besides, we will use r to denote the number of nonzero rows. For example,

$$B = \begin{bmatrix} 1 & 5 & 0 & 0 & 2 & 8 & 0 & 5 & -1 \\ 0 & 0 & 1 & 0 & 4 & 7 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 3 & 9 & 0 & 3 & -6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $r = 4 \qquad d_1 = 1 \qquad d_2 = 3 \qquad d_3 = 4 \qquad d_4 = 7 \\ f_1 = 2 \qquad f_2 = 5 \qquad f_3 = 6 \qquad f_4 = 8 \qquad f_5 = 9$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Notation

Let us use D and F to denote the indices of the columns. Besides, we will use r to denote the number of nonzero rows. For example,

$$B = \begin{bmatrix} 1 & 5 & 0 & 0 & 2 & 8 & 0 & 5 & -1 \\ 0 & 0 & 1 & 0 & 4 & 7 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 3 & 9 & 0 & 3 & -6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\begin{array}{cccc} r=4 & d_1=1 & d_2=3 & d_3=4 & d_4=7 \\ f_1=2 & f_2=5 & f_3=6 & f_4=8 & f_5=9 \end{array}$

 $D = \{d_1, d_2, d_3, d_4\} = \{1, 3, 4, 7\}$ and $F = \{f_1, f_2, f_3, f_4, f_5\} = \{2, 5, 6, 8, 9\}$ define a **partition** of the columns in B.

イロト 不得 トイヨト イヨト 二日

6/40

The number r is the most important piece of information we can get from the reduced row-echelon form of a matrix. It is

< □ > < □ > < □ > < □ > < □ >

The number r is the most important piece of information we can get from the reduced row-echelon form of a matrix. It is

• the number of nonzero rows,

< □ > < □ > < □ > < □ > < □ >

The number r is the most important piece of information we can get from the reduced row-echelon form of a matrix. It is

- the number of nonzero rows,
- the number of leading 1's,

イロト イ団ト イヨト イヨト

The number r is the most important piece of information we can get from the reduced row-echelon form of a matrix. It is

- the number of nonzero rows,
- the number of leading 1's,
- and the number of pivot columns.

イロト イ団ト イヨト イヨト

An example

$$x_1 - x_2 - 2x_3 + x_4 + 11x_5 = 13$$

$$x_1 - x_2 + x_3 + x_4 + 5x_5 = 16$$

$$2x_1 - 2x_2 + x_4 + 10x_5 = 21$$

$$2x_1 - 2x_2 - x_3 + 3x_4 + 20x_5 = 38$$

$$2x_1 - 2x_2 + x_3 + x_4 + 8x_5 = 22$$

イロト イロト イヨト イヨト

An example

$$x_{1} - x_{2} - 2x_{3} + x_{4} + 11x_{5} = 13$$

$$x_{1} - x_{2} + x_{3} + x_{4} + 5x_{5} = 16$$

$$2x_{1} - 2x_{2} + x_{4} + 10x_{5} = 21$$

$$2x_{1} - 2x_{2} - x_{3} + 3x_{4} + 20x_{5} = 38$$

$$2x_{1} - 2x_{2} + x_{3} + x_{4} + 8x_{5} = 22$$

2

イロト イロト イヨト イヨト

An example

$x_1 - x_2 - 2x_3 + x_4 + 11x_5 = 13$	1	-1	0	0	3	6]	
$x_1 - x_2 + x_3 + x_4 + 5x_5 = 16$	0	0	1	0	-2	1	
$2x_1 - 2x_2 + x_4 + 10x_5 = 21$	0	0	0	1	4	9	
$2x_1 - 2x_2 - x_3 + 3x_4 + 20x_5 = 38$	0	0	0	0	0	0	
$2x_1 - 2x_2 + x_3 + x_4 + 8x_5 = 22$	[0	0	0	0	0	0]	

 $D = \{1, 3, 4\}$. Thus, x_1 , x_3 , and x_4 are **dependent variables**. There are r = |D| = 3 equations. $F = \{2, 5, 6\}$. Thus x_2 and x_5 are **free variables** ($6 \in F$ corresponds to the vector of constants).

イロト イ団ト イヨト イヨト

An example

$x_1 - x_2 - 2x_3 + x_4 + 11x_5 = 13$	1	-1	0	0	3	6]	
$x_1 - x_2 + x_3 + x_4 + 5x_5 = 16$	0	0	1	0	-2	1	
$2x_1 - 2x_2 + x_4 + 10x_5 = 21$	0	0	0	1	4	9	
$2x_1 - 2x_2 - x_3 + 3x_4 + 20x_5 = 38$	0	0	0	0	0	0	
$2x_1 - 2x_2 + x_3 + x_4 + 8x_5 = 22$	L 0	0	0	0	0	0]	

 $D = \{1, 3, 4\}$. Thus, x_1 , x_3 , and x_4 are **dependent variables**. There are r = |D| = 3 equations. $F = \{2, 5, 6\}$. Thus x_2 and x_5 are **free variables** ($6 \in F$ corresponds to the vector of constants).

イロト イ団ト イヨト イヨト

An example

$x_1 - x_2 - 2x_3 + x_4 + 11x_5 = 13$	1	$^{-1}$	0	0	3	6]
$x_1 - x_2 + x_3 + x_4 + 5x_5 = 16$	0	0	1	0	-2	1
$2x_1 - 2x_2 + x_4 + 10x_5 = 21$	0	0	0	1	4	9
$2x_1 - 2x_2 - x_3 + 3x_4 + 20x_5 = 38$	0	0	0	0	0	0
$2x_1 - 2x_2 + x_3 + x_4 + 8x_5 = 22$	[0	0	0	0	0	0]

 $D = \{1, 3, 4\}$. Thus, x_1 , x_3 , and x_4 are **dependent variables**. There are r = |D| = 3 equations. $F = \{2, 5, 6\}$. Thus x_2 and x_5 are free variables ($6 \in F$ corresponds to the vector of constants).

$$\begin{array}{ll} (x_{d_1} = x_1) & x_1 = 6 + x_2 - 3x_5 \\ (x_{d_2} = x_3) & x_3 = 1 + 2x_5 \\ (x_{d_3} = x_4) & x_4 = 9 - 4x_5 \end{array} \qquad S = \left\{ \begin{array}{c} 6 + x_2 - 3x_5 \\ x_2 \\ 1 + 2x_5 \\ 9 - 4x_5 \\ x_5 \end{array} \right] : x_2, x_5 \in \mathbb{C} \right\}$$

э

8/40

イロト イポト イヨト イヨト

Theorem

Suppose A is the augmented matrix of a system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column n + 1 of B.

Theorem

Suppose A is the augmented matrix of a system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column n + 1 of B.

Proof.

(\Leftarrow) Leading 1 of row r is in column n + 1. Thus, 0 = 1. The system is inconsistent.

 (\Rightarrow) We prove the contrapositive: If the leading 1 or row r is not in column n+1, then the system of equations is consistent. Since the last leading 1 is not in the last column, no leading 1 for any row is in the last column (because of the properties of a reduced row-echelon form). We can construct a solution by setting

$$x_{d_i} = [B]_{i,n+1}, \ 1 \le i \le r$$
 $x_{f_i} = 0, \ 1 \le i \le n-r$

The beauty of this theorem is that we can unequivocally test if a system is consistent or inconsistent by looking at just a single entry. Also, notice that

The beauty of this theorem is that we can unequivocally test if a system is consistent or inconsistent by looking at just a single entry. Also, notice that

• for a consistent system, the row-reduced augmented matrix has $n+1 \in F$,

The beauty of this theorem is that we can unequivocally test if a system is consistent or inconsistent by looking at just a single entry. Also, notice that

- for a consistent system, the row-reduced augmented matrix has $n+1 \in F$,
- for an inconsistent system, $n + 1 \in D$. In this scenario, it makes no sense to label variables as dependent or free because there are no solutions.

Inconsistent system, r and n

Theorem

Suppose A is the augmented matrix of a system of linear equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If r = n + 1, then the system of equations is inconsistent.

Inconsistent system, r and n

Theorem

Suppose A is the augmented matrix of a system of linear equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If r = n + 1, then the system of equations is inconsistent.

Proof.

If r = n + 1, then $D = \{1, 2, 3, ..., n, n + 1\}$ and every column of B contains a leading 1 and is a pivot column. By the previous theorem, the system is inconsistent.

Consistent systems, r and n

Theorem

Suppose A is the augmented matrix of a consistent system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then $r \le n$. If r = n, then the system has a unique solution, and if r < n, then the system has infinitely many solutions.

Consistent systems, r and n

Theorem

Suppose A is the augmented matrix of a consistent system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then $r \leq n$. If r = n, then the system has a unique solution, and if r < n, then the system has infinitely many solutions.

Proof.

Since B has n + 1 columns, $r \le n + 1$. However, we know the system is consistent; therefore, by the previous theorem, $r \le n$. We now prove two implications.

(1) When r = n, we find n - r = 0 free variables (i.e. $F = \{n + 1\}$) and there is a unique solution.

(2) When r < n, we have n - r > 0 free variables. Thus, there are infinite solutions.

イロト イヨト イヨト

э

Free variables

Theorem

Suppose A is the augmented matrix of a consistent system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with n - r free variables.

イロト イヨト イヨト イヨト

Free variables

Theorem

Suppose A is the augmented matrix of a consistent system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with n - r free variables.

Proof.

See the previous theorem.

イロト イヨト イヨト イヨト

Possible solution sets for linear systems

Theorem

A system of linear equations has no solutions, a unique solution or infinitely many solutions.

イロト イヨト イヨト イ

Possible solution sets for linear systems

Theorem

A system of linear equations has no solutions, a unique solution or infinitely many solutions.

Proof.

By its definitions, a system is either inconsistent or consistent. The first case describes systems with no solutions. For consistent systems, we have two possibilities guaranteed by one of the previous theorems: one solution or infinite solutions.

14 / 40

Possible solution sets for linear systems

15 / 40

• • • • • • • • • • •

Consistent, more variables than equations, infinite solutions

Theorem

Suppose a consistent system of linear equations has m equations in n variables. If n > m, then the system has infinitely many solutions.

Consistent, more variables than equations, infinite solutions

Theorem

Suppose a consistent system of linear equations has m equations in n variables. If n > m, then the system has infinitely many solutions.

Proof.

Suppose that the augmented matrix of the system of equations is row-equivalent to B, a matrix in reduced row-echelon form with r nonzero rows. Because B has m rows in total, $r \leq m$. Follow this with the hypothesis that n > m and we find that the system has a solution set described by at least one free variable because

$$n-r \ge n-m > 0$$

A consistent system with free variables has an infinite number of solutions.

イロト イヨト イヨト

Homogeneous systems of equations

メロト メタト メヨト メヨト

Homogeneous system

Definition

A system of linear equations, $\mathcal{LS}(A, \mathbf{b})$ is **homogeneous** if the vector of constants is the zero vector, in other words, if $\mathbf{b} = \mathbf{0}$

< □ > < □ > < □ > < □ > < □ >

Homogeneous system

Theorem

Suppose that a system of linear equations is homogeneous. Then the system is consistent.

< □ > < □ > < □ > < □ > < □ >
Homogeneous system

Theorem

Suppose that a system of linear equations is homogeneous. Then the system is consistent.

Proof.

Set each variable of the system to zero. When substituting these values into each equation, the left-hand side evaluates to zero, no matter what the coefficients are. Since a homogeneous system has zero on the right-hand side of each equation as the constant term, each equation is true. With one demonstrated solution, we can call the system consistent.

(日) (四) (日) (日) (日)

Homogeneous system

Definition

Suppose a homogeneous system of linear equations has n variables. The solution $x_1 = 0, x_2 = 0, ..., x_n = 0$ (i.e. $\mathbf{x} = \mathbf{0}$) is called the **trivial solution**.

< □ > < □ > < □ > < □ > < □ >

Homogeneous, more variables than equations, infinite solutions

Theorem

Suppose that a homogeneous system of linear equations has m equations and n variables with n > m. Then the system has infinitely many solutions.

Homogeneous, more variables than equations, infinite solutions

Theorem

Suppose that a homogeneous system of linear equations has m equations and n variables with n > m. Then the system has infinitely many solutions.

Proof.

We are assuming the system is homogeneous, so it is consistent. We know that consistent systems with n > m have infinitely many solutions.

(日) (四) (日) (日) (日)

Null space of a matrix

Definition

The **null space** of a matrix A, denoted $\mathcal{N}(A)$, is the set of all the vectors that are solutions to the homogeneous system $\mathcal{LS}(A, \mathbf{0})$.

Let's compute the null space $\mathcal{N}(A)$ of

$$A = \begin{bmatrix} 2 & -1 & 7 & -3 & -8 \\ 1 & 0 & 2 & 4 & 9 \\ 2 & 2 & -2 & -1 & 8 \end{bmatrix}$$

2

メロト メロト メヨト メヨト

Let's compute the null space $\mathcal{N}(A)$ of

$$A = \begin{bmatrix} 2 & -1 & 7 & -3 & -8 \\ 1 & 0 & 2 & 4 & 9 \\ 2 & 2 & -2 & -1 & 8 \end{bmatrix}$$

We desire to solve the homogeneous system $\mathcal{LS}(A, \mathbf{0})$. So, we row-reduce the augmented matrix to obtain

Let's compute the null space $\mathcal{N}(A)$ of

$$A = \begin{bmatrix} 2 & -1 & 7 & -3 & -8 \\ 1 & 0 & 2 & 4 & 9 \\ 2 & 2 & -2 & -1 & 8 \end{bmatrix}$$

We desire to solve the homogeneous system $\mathcal{LS}(A, \mathbf{0})$. So, we row-reduce the augmented matrix to obtain

$$\begin{bmatrix} 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 1 & -3 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \end{bmatrix}$$

Let's compute the null space $\mathcal{N}(A)$ of

$$A = \begin{bmatrix} 2 & -1 & 7 & -3 & -8 \\ 1 & 0 & 2 & 4 & 9 \\ 2 & 2 & -2 & -1 & 8 \end{bmatrix}$$

We desire to solve the homogeneous system $\mathcal{LS}(A,\mathbf{0}).$ So, we row-reduce the augmented matrix to obtain

$$\begin{bmatrix} 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 1 & -3 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \end{bmatrix}$$

 x_3 and x_5 are free variables. So,

$$x_1 = -2x_3 - x_5 x_2 = 3x_3 - 4x_5 x_4 = -2x_5$$

Let's compute the null space $\mathcal{N}(A)$ of

$$A = \begin{bmatrix} 2 & -1 & 7 & -3 & -8 \\ 1 & 0 & 2 & 4 & 9 \\ 2 & 2 & -2 & -1 & 8 \end{bmatrix}$$

We desire to solve the homogeneous system $\mathcal{LS}(A, \mathbf{0})$. So, we row-reduce the augmented matrix to obtain

$$\begin{bmatrix} 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 1 & -3 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \end{bmatrix}$$

 x_3 and x_5 are free variables. So,

$$x_1 = -2x_3 - x_5$$
$$x_2 = 3x_3 - 4x_5$$
$$x_4 = -2x_5$$

Thus, the null space (solution set) is

$$\mathcal{N}(A) = \left\{ \begin{bmatrix} -2x_3 - x_5\\ 3x_3 - 4x_5\\ x_3\\ -2x_5\\ x_5 \end{bmatrix} : x_3, x_5 \in \mathbb{C} \right\}$$

Let's compute the null space $\mathcal{N}(C)$ of

$$C = \begin{bmatrix} -4 & 6 & 1\\ -1 & 4 & 1\\ 5 & 6 & 7\\ 4 & 7 & 1 \end{bmatrix}$$

2

Let's compute the null space $\mathcal{N}(C)$ of

$$C = \begin{bmatrix} -4 & 6 & 1\\ -1 & 4 & 1\\ 5 & 6 & 7\\ 4 & 7 & 1 \end{bmatrix}$$

We desire to solve the homogeneous system $\mathcal{LS}(C, \mathbf{0})$. So, we row-reduce the augmented matrix to obtain

Let's compute the null space $\mathcal{N}(C)$ of

$$C = \begin{bmatrix} -4 & 6 & 1 \\ -1 & 4 & 1 \\ 5 & 6 & 7 \\ 4 & 7 & 1 \end{bmatrix}$$

We desire to solve the homogeneous system $\mathcal{LS}(C, \mathbf{0})$. So, we row-reduce the augmented matrix to obtain

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Let's compute the null space $\mathcal{N}(C)$ of

$$C = \begin{bmatrix} -4 & 6 & 1 \\ -1 & 4 & 1 \\ 5 & 6 & 7 \\ 4 & 7 & 1 \end{bmatrix}$$

We desire to solve the homogeneous system $\mathcal{LS}(C, \mathbf{0})$. So, we row-reduce the augmented matrix to obtain

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

There are no free variables $(F = \{4\})$. So,

 $x_1 = 0$ $x_2 = 0$ $x_3 = 0$

Let's compute the null space $\mathcal{N}(C)$ of

$$C = \begin{bmatrix} -4 & 6 & 1 \\ -1 & 4 & 1 \\ 5 & 6 & 7 \\ 4 & 7 & 1 \end{bmatrix}$$

We desire to solve the homogeneous system $\mathcal{LS}(C, \mathbf{0})$. So, we row-reduce the augmented matrix to obtain

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

There are no free variables $(F = \{4\})$. So,

 $x_1 = 0$ $x_2 = 0$ $x_3 = 0$

Thus, the null space (solution set) is

$$\mathcal{N}(C) = \{\mathbf{0}\} = \left\{ \begin{array}{c} \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$$

Nonsingular matrices

2

メロト メロト メヨト メヨト

Nonsingular matrices

This section focuses on matrices with equal number of rows and columns, which when considered as coefficient matrices lead to systems with equal number of equations and variables.

Nonsingular matrices

This section focuses on matrices with equal number of rows and columns, which when considered as coefficient matrices lead to systems with equal number of equations and variables.

Observation

- A system of equations is not a matrix.
- A matrix is not a system of equations.
- A matrix is not a solution set.
- A solution set is not a system of equations.

(日) (四) (日) (日) (日)

Square matrix

Definition

A matrix with m rows and n columns is **square** if m = n. In this case, we say the matrix has **size** n. To emphasize when a matrix is not square, we will call it **rectangular**.

Nonsingular matrix

Definition

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear system of equations $\mathcal{LS}(A, \mathbf{0})$ is $\{\mathbf{0}\}$, in other words, the system has only the trivial solution. Then we say that A is a **nonsingular** matrix. Otherwise, we say A is a **singular** matrix.

Nonsingular matrix

Definition

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear system of equations $\mathcal{LS}(A, \mathbf{0})$ is $\{\mathbf{0}\}$, in other words, the system has only the trivial solution. Then we say that A is a **nonsingular** matrix. Otherwise, we say A is a **singular** matrix.

Observation

- We can decide nonsingularity for any square matrix.
- The determination of nonsingularity involves the solution set for a certain homogeneous system of equations.
- It makes no sense to call a system of equations nonsingular.
- It makes no sense to call a 5×7 matrix singular.

< □ > < □ > < □ > < □ > < □ >

Identity matrix

Definition

The $m \times m$ identity matrix, I_m , is defined by

$$[I_m]_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \quad 1 \le i, j \le m$$

CO	U A LI	CVT	INLA	OE'
	МН			

2

メロト メタト メヨト メヨト

Identity matrix

Definition

The $m \times m$ identity matrix, I_m , is defined by

$$[I_m]_{ij} = \begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases} \quad 1 \le i, j \le m$$

Notice that an identity matrix is square and in reduced row-echelon form.

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

э

Nonsingular matrices row-reduce to the identity matrix

Theorem

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

(日) (四) (日) (日) (日)

Nonsingular matrices row-reduce to the identity matrix

Theorem

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

Proof.

(\Leftarrow) If *B* is the identity matrix, n = r, i.e., there are no free variables. Therefore, $\mathcal{LS}(A, \mathbf{0})$ has only the trivial solution. This is the definition of a nonsingular matrix.

(\Rightarrow) If A is nonsingular, $\mathcal{LS}(A, \mathbf{0})$ only has the trivial solution. Thus, it has n - r = 0 free variables. Therefore, n = r, which means that B has n pivot columns. Since B is a square matrix, it must be the identity matrix.

30 / 40

イロト イヨト イヨト

Nonsingular matrices have trivial null spaces

Theorem

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A, $\mathcal{N}(A)$, contains only the zero vector, i.e., $\mathcal{N}(A) = \{\mathbf{0}\}$.

Nonsingular matrices have trivial null spaces

Theorem

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A, $\mathcal{N}(A)$, contains only the zero vector, i.e., $\mathcal{N}(A) = \{\mathbf{0}\}$.

Proof.

It follows from the definitions.

Nonsingular matrices and unique solutions

Theorem

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector \mathbf{b} .

Nonsingular matrices and unique solutions

Theorem

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector \mathbf{b} .

Proof.

(\Leftarrow) Assume that $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every choice of \mathbf{b} . So, let's choose $\mathbf{b} = \mathbf{0}$. As we already know, $\mathcal{LS}(A, \mathbf{0})$ has only the trivial solution. But this is precisely the definition of a nonsingular matrix. (\Rightarrow) Assuming A is nonsingular of size $n \times n$, its reduced row-echelon form is the identity matrix. Form the augmented matrix $A' = [A|\mathbf{b}]$ and apply the same sequence of row operations. The result is the matrix $B' = [I_n|\mathbf{c}]$, which is in reduced row-echelon with r = n. So, vector \mathbf{c} is the only solution because there are no free variables (n - r = n - n = 0).

< □ > < □ > < □ > < □ > < □ >

Nonsingular matrix equivalences

Theorem

Suppose that A is a square matrix. The following are equivalent.

- A is nonsingular.
- A row-reduces to the identity matrix.
- The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}$.
- The linear system LS(A, b) has a unique solution for every possible choice of b.

Nonsingular matrix equivalences

Theorem

Suppose that A is a square matrix. The following are equivalent.

- A is nonsingular.
- A row-reduces to the identity matrix.
- The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}$.
- The linear system LS(A, b) has a unique solution for every possible choice of b.

Proof.

It follows from the previous theorems and definitions.

(CON	AHCYL	INAOF.
(2011		

Ending

(cor		ICVA	
COI	VAF	1 C Y I	AUE

July 9 2024 34 / 40

æ

・ロト ・四ト ・ヨト ・ヨト

• A system of linear equations is **consistent** if it has at least one solution.

< □ > < □ > < □ > < □ > < □ >

Summary

- A system of linear equations is **consistent** if it has at least one solution.
- We can recognize consistency of a system by looking at its **reduced row-echelon form**.

Summary

- A system of linear equations is **consistent** if it has at least one solution.
- We can recognize consistency of a system by looking at its **reduced row-echelon form**.
- r let us identify consistency of a system (and type of consistency).

Summary

- A system of linear equations is **consistent** if it has at least one solution.
- We can recognize consistency of a system by looking at its **reduced row-echelon form**.
- r let us identify consistency of a system (and type of consistency).
- A homogeneous system is always consistent (it has the trivial solution).
- A system of linear equations is **consistent** if it has at least one solution.
- We can recognize consistency of a system by looking at its **reduced row-echelon form**.
- r let us identify consistency of a system (and type of consistency).
- A homogeneous system is always consistent (it has the trivial solution).
- The **null space**, $\mathcal{N}(A)$, of a matrix A is the set of all vectors that are solutions to $\mathcal{LS}(A, \mathbf{0})$.

• • • • • • • • • • •

• Matrix A is **nonsingular** if the solution set of $\mathcal{LS}(\mathcal{A}, \mathbf{0})$ contains only the trivial solution.

イロト イヨト イヨト イヨト

- Matrix A is **nonsingular** if the solution set of $\mathcal{LS}(\mathcal{A}, \mathbf{0})$ contains only the trivial solution.
- Matrix A is nonsingular if $\mathcal{N}(A) = \mathbf{0}$.

< □ > < □ > < □ > < □ > < □ >

- Matrix A is **nonsingular** if the solution set of $\mathcal{LS}(\mathcal{A}, \mathbf{0})$ contains only the trivial solution.
- Matrix A is nonsingular if $\mathcal{N}(A) = \mathbf{0}$.

• Applying Gauss-Jordan elimination to a nonsingular matrix always leads to the **identity matrix**.

(日) (四) (日) (日) (日)

- Matrix A is **nonsingular** if the solution set of $\mathcal{LS}(\mathcal{A}, \mathbf{0})$ contains only the trivial solution.
- Matrix A is nonsingular if $\mathcal{N}(A) = \mathbf{0}$.
- Applying Gauss-Jordan elimination to a nonsingular matrix always leads to the **identity matrix**.
- Systems $\mathcal{LS}(A,\mathbf{b})$ have only one solution, for any $\mathbf{b},$ if and only if A is nonsingular.

(日) (四) (日) (日) (日)

Homework

- Suppose that the coefficient matrix of a consistent system of linear equations has two columns that are identical. Prove that the system has infinitely many solutions.
- Consider the homogeneous system of linear equations \$\mathcal{LS}(A, \mathbf{0})\$, and suppose that \$\mu = [u_1, u_2, ..., u_n]\$ is one solution to the system. Prove that \$\mu = [4u_1, 4u_2, ..., 4u_n]\$ is also a solution to \$\mathcal{LS}(A, \mathbf{0})\$.

(日) (四) (日) (日) (日)

• If any, find the values of k for which each system has (a) no solution, (b) one solution, (c) infinite solutions. (Use Gauss-Jordan elimination; avoid using the determinant concept.)

$$kx + 2y = 3$$
$$2x - 4y = -6$$
$$x + ky = 1$$
$$kx + y = 1$$

イロト イ団ト イヨト イヨト

Endin

Next topics

Vectors

CO	U A LI	CVT	INLA	OE'
	МН			

July 9 2024 39 / 40

э.

イロト イヨト イヨト イヨト

Thank you

2

▲□▶ ▲圖▶ ▲国▶ ▲国▶