

Jesús García Díaz

CONAHCYT INAOE

July 9 2024

É

 299

メロトメ 御 トメ ミトメ ミト

Contents

[Vectors](#page-3-0)

- 2 [Linear combinations and coordinates](#page-46-0)
- ³ [The dot product](#page-52-0)

[Distance](#page-82-0)

[Projections](#page-101-0)

 299

メロメ メ御 メメ きょく きょう

Bibliography

<http://linear.ups.edu/>

KORK@RKERKER E 1990

Physics

 $\frac{1}{2}$

- Usually represented by arrows that have:
	- magnitude
	- and direction

 299

メロメ メ御 メメ きょく きょう

Physics

 $\frac{1}{2}$

- Usually represented by arrows that have:
	- magnitude
	- and direction

Computer science

• List of numbers.

メロトメ 御 トメ ミトメ ミト

 299

Physics

- Usually represented by arrows that have:
	- magnitude
	- and direction

Mathematics

- **•** Anything.
- As long as it respects certain rules.

Computer science

• List of numbers.

メロトメ 倒 トメ ミトメ ミト

目

 QQ

Definition

A **vector** is a directed line segment that corresponds to a displacement from one point A to another point B. The vector from A to B is denoted by \overrightarrow{AB} ; the point A is called its initial point, or tail, and the point B is called its terminal point or head. Often, a vector is simply denoted by a single boldface, lowercase letters such as v.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Definition

A **vector** is a directed line segment that corresponds to a displacement from one point A to another point B. The vector from A to B is denoted by \overrightarrow{AB} ; the point A is called its initial point, or tail, and the point B is called its terminal point or head. Often, a vector is simply denoted by a single boldface, lowercase letters such as v.

The set of all points in the plane corresponds to the set of all vector whose tail are at the origin O .

Definition

Vectors with its tail at the origin are called position vectors.

 299

メロトメ 伊 トメ ミトメ ミト

Point A corresponds to the position vector $\mathbf{a} = \overrightarrow{OA} = [3,2].$ The other vectors in the figure are **and** $**c** = [2, -1]$ **.**

 Ω

4 ロ ▶ 4 何 ▶ 4

Point A corresponds to the position vector $\mathbf{a} = \overrightarrow{OA} = [3,2].$ The other vectors in the figure are **and** $**c** = [2, -1]$ **.**

The individual coordinates (3 and 2 in the case of a) are called the **components** of the vector.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Two vectors are equal if and only if their corresponding components are equal. Thus, $[x, y] = [1, 5]$ implies that $x = 1$ and $y = 5$.

Using column vectors instead of row vectors is frequently convenient.

So, $[3,2]$ can be represented as $\begin{bmatrix} 3 & 2 \ 3 & 2 \end{bmatrix}$ 2 .

 Ω

We cannot draw the vector $[0, 0] = \overrightarrow{OO}$ from the origin to itself. Nevertheless, it is a perfectly good vector and has a special name: the zero vector. The zero vector is denoted by 0.

(CONAHCYT INAOE) **[Linear algebra](#page-0-0)** Concerned Linear algebra July 9 2024 10 / 56

 Ω

 $A \Box B$ A B B A B B A

What can you say about these three vectors?

É

 299

K ロ ▶ K 倒 ▶ K

Ξ n. ТE 16

What can you say about these three vectors?

By setting the tail of each vector in the origin, we observe they all coincide.

 Ω

K ロ ⊁ K 倒 ⊁ K

B **IN**

New vectors from old

We often want to follow one vector by another. This leads to the notion of vector addition.

If we follow $\mathbf u$ by $\mathbf v$, we can visualize the total displacement as a third vector, denoted by $\mathbf{u} + \mathbf{v}$.

 Ω

K ロ ▶ K 何 ▶

New vectors from old

In general, if $\mathbf{u} = [u_1, u_2]$ and $\mathbf{v} = [v_1, v_2]$, the their sum $\mathbf{u} + \mathbf{v}$ is the vector

$$
\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2]
$$

New vectors from old

Our next vector operation is scalar multiplication. Given a vector \bf{v} and a real number c , the scalar multiplication $c\mathbf{v}$ is the vector contained by multiplying each component of \bf{v} by c . In general,

$$
c\mathbf{v} = c[v_1, v_2] = [cv_1, cv_2]
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 QQ

New vectors from old

Our next vector operation is **scalar multiplication**. Given a vector **v** and a real number c, the scalar multiplication $c\mathbf{v}$ is the vector contained by multiplying each component of v by c . In general,

$$
c\mathbf{v} = c[v_1, v_2] = [cv_1, cv_2]
$$

Geometrically, $c\mathbf{v}$ is a "scaled" version of \mathbf{v} .

 Ω

K ロ ▶ K 何 ▶

 \mathbb{R}^n is a shorthand for $\mathbb{R}\times\mathbb{R}\times\cdots\times\mathbb{R}$, the cartesian product of $\mathbb R$ with itself n times. So, it is the set of all ordered n -tuples of real numbers written as row or column vectors. Thus, a vector $\mathbf{v} \in \mathbb{R}^n$ is of the form

$$
[v_1, v_2, \dots, v_n] \quad \text{or} \quad \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}
$$

The individual entries of **v** are its components; v_i is called the i -th component.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

We extend the definitions of vector addition and scalar multiplication to \mathbb{R}^n in the obvious way:

If ${\bf u} = [u_1, u_2, ..., u_n]$ and ${\bf v} = [v_1, v_2, ..., v_n]$, the *i*-th component of ${\bf u} + {\bf v}$ is $u_i + v_i$ and the *i*-th component of c **v** is just cv_i .

[Vectors](#page-3-0)

 QQ

イロト イ部 トイ ヨ トイ ヨ トー

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

 299

イロト イ部 トイ ヨ トイ ヨ トー

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

 \bullet **u** + **v** = **v** + **u** (commutativity)

 298

メロメメ 倒 メメ きょくきょう

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- \bullet **u** + **v** = **v** + **u** (commutativity)
- \bullet (**u** + **v**) + **w** = **u** + (**v** + **w**) (additive associativity)

 Ω

メロトメ 倒 トメ 君 トメ 君 トー

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- \bullet **u** + **v** = **v** + **u** (commutativity)
- \bullet (**u** + **v**) + **w** = **u** + (**v** + **w**) (additive associativity)
- \bullet **u** + **0** = **u** (zero vector)

メロトメ 倒 トメ 君 トメ 君 トー

 299

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- \bullet **u** + **v** = **v** + **u** (commutativity)
- \bullet (**u** + **v**) + **w** = **u** + (**v** + **w**) (additive associativity)
- $u + 0 = u$ (zero vector)
- \bullet **u** + (-**u**) = **0** (additive inverses)

≮ロト ⊀個 ▶ ≮ ヨ ▶ ⊀ ヨ ▶

 QQ

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- \bullet **u** + **v** = **v** + **u** (commutativity)
- \bullet (**u** + **v**) + **w** = **u** + (**v** + **w**) (additive associativity)
- $u + 0 = u$ (zero vector)
- $u + (-u) = 0$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)

 Ω

≮ロト ⊀個 ▶ ≮ ヨ ▶ ⊀ ヨ ▶

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- \bullet **u** + **v** = **v** + **u** (commutativity)
- \bullet (**u** + **v**) + **w** = **u** + (**v** + **w**) (additive associativity)
- $u + 0 = u$ (zero vector)
- $u + (-u) = 0$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)
- \bullet $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity across scalar addition)

 Ω

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- \bullet **u** + **v** = **v** + **u** (commutativity)
- \bullet (**u** + **v**) + **w** = **u** + (**v** + **w**) (additive associativity)
- $u + 0 = u$ (zero vector)
- $u + (-u) = 0$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)
- $(c + d)$ **u** = c**u** + d**u** (distributivity across scalar addition)
- $c(du) = (cd)u$ (scalar multiplication associativity)

 Ω

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- \bullet **u** + **v** = **v** + **u** (commutativity)
- \bullet (**u** + **v**) + **w** = **u** + (**v** + **w**) (additive associativity)
- $u + 0 = u$ (zero vector)
- \bullet **u** + (-**u**) = **0** (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)
- $(c + d)$ **u** = c**u** + d**u** (distributivity across scalar addition)
- \bullet $c(d\mathbf{u}) = (cd)\mathbf{u}$ (scalar multiplication associativity)
- $1u = u$ (one)

 Ω

Each bullet must be proved. In general, they all inherit the properties of the operations over real numbers. For instance,

$$
\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ v_2 + u_2 \\ \vdots \\ v_n + u_n \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \mathbf{v} + \mathbf{u}
$$

E

 299

イロト イ部 トイ ヨ トイ ヨ トー

Simplify (x in terms of a)

 $5x - a = 2(a + 2x)$

 299

メロトメ 倒 トメ きょくきょう

Simplify (x in terms of a)

$$
5\mathbf{x} - \mathbf{a} = 2(\mathbf{a} + 2\mathbf{x})
$$

$$
5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 2(2\mathbf{x})
$$

K ロ X x 何 X x モ X x モ X → 三 电 → の Q Q →

Simplify (x in terms of a)

$$
5\mathbf{x} - \mathbf{a} = 2(\mathbf{a} + 2\mathbf{x})
$$

$$
5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 2(2\mathbf{x})
$$

$$
5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + (2 \cdot 2)\mathbf{x}
$$

 299

メロトメ 御 トメ 差 トメ 差 トー

Simplify (x in terms of a)

$$
5\mathbf{x} - \mathbf{a} = 2(\mathbf{a} + 2\mathbf{x})
$$

$$
5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 2(2\mathbf{x})
$$

$$
5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + (2 \cdot 2)\mathbf{x}
$$

$$
5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 4\mathbf{x}
$$

 299

メロトメ 御 トメ 差 トメ 差 トー
Simplify (x in terms of a) $5x - a = 2(a + 2x)$ $5x - a = 2a + 2(2x)$ $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + 4x$ $(5x - a) - 4x = (2a + 4x) - 4x$

 299

メロトメ 倒 トメ ヨ トメ ヨト

Simplify (x in terms of a) $5x - a = 2(a + 2x)$ $5x - a = 2a + 2(2x)$ $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + 4x$ $(5x - a) - 4x = (2a + 4x) - 4x$ $(-a + 5x) - 4x = 2a + (4x - 4x)$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Simplify (x in terms of a) $5x - a = 2(a + 2x)$ $5x - a = 2a + 2(2x)$ $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + 4x$ $(5x - a) - 4x = (2a + 4x) - 4x$ $(-a + 5x) - 4x = 2a + (4x - 4x)$ $- a + (5x - 4x) = 2a + 0$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Simplify (x in terms of a) $5x - a = 2(a + 2x)$ $5x - a = 2a + 2(2x)$ $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + 4x$ $(5x - a) - 4x = (2a + 4x) - 4x$ $(-a + 5x) - 4x = 2a + (4x - 4x)$ $- a + (5x - 4x) = 2a + 0$

$$
-\mathbf{a} + (5-4)\mathbf{x} = 2\mathbf{a}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Simplify (x in terms of a) $5x - a = 2(a + 2x)$ $5x - a = 2a + 2(2x)$ $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + 4x$ $(5x - a) - 4x = (2a + 4x) - 4x$ $(-a + 5x) - 4x = 2a + (4x - 4x)$ $- a + (5x - 4x) = 2a + 0$

$$
-a + (5 - 4)x = 2a
$$

$$
-a + (1)x = 2a
$$

イロト イ押 トイヨ トイヨト

 QQ

Simplify (x in terms of a) $5x - a = 2(a + 2x)$ $5x - a = 2a + 2(2x)$ $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + 4x$ $(5x - a) - 4x = (2a + 4x) - 4x$ $(-a + 5x) - 4x = 2a + (4x - 4x)$ $- a + (5x - 4x) = 2a + 0$ $- a + (5 - 4)x = 2a$ $- a + (1)x = 2a$ $- a + x = 2a$

э

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 QQ

Simplify (x in terms of a) $5x - a = 2(a + 2x)$ $5x - a = 2a + 2(2x)$ $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + 4x$ $(5x - a) - 4x = (2a + 4x) - 4x$ $(-a + 5x) - 4x = 2a + (4x - 4x)$ $- a + (5x - 4x) = 2a + 0$

$$
-a + (5-4)x = 2a
$$

$$
-a + (1)x = 2a
$$

$$
-a + x = 2a
$$

$$
a + (-a + x) = a + 2a
$$

イロト イ押 トイヨ トイヨト

э

Simplify (x in terms of a) $5x - a = 2(a + 2x)$ $5x - a = 2a + 2(2x)$ $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + 4x$ $(5x - a) - 4x = (2a + 4x) - 4x$ $(-a + 5x) - 4x = 2a + (4x - 4x)$ $- a + (5x - 4x) = 2a + 0$

$$
-a + (5-4)x = 2a
$$

$$
-a + (1)x = 2a
$$

$$
-a + x = 2a
$$

$$
a + (-a + x) = a + 2a
$$

$$
(a + (-a)) + x = (1+2)a
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

(CONAHCYT INAOE) **[Linear algebra](#page-0-0)** July 9 2024 19/56

э

Simplify (x in terms of a) $5x - a = 2(a + 2x)$ $5x - a = 2a + 2(2x)$ $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + 4x$ $(5x - a) - 4x = (2a + 4x) - 4x$ $(-a + 5x) - 4x = 2a + (4x - 4x)$ $- a + (5x - 4x) = 2a + 0$ $- a + (5 - 4)x = 2a$ $- a + (1)x = 2a$ $- a + x = 2a$ $a + (-a + x) = a + 2a$ $(a + (-a)) + x = (1 + 2)a$ $0 + x = 3a$

(CONAHCYT INAOE) **[Linear algebra](#page-0-0)** July 9 2024 19/56

э

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Simplify (x in terms of a) $5x - a = 2(a + 2x)$ $5x - a = 2a + 2(2x)$ $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + 4x$ $(5x - a) - 4x = (2a + 4x) - 4x$ $(-a + 5x) - 4x = 2a + (4x - 4x)$ $- a + (5x - 4x) = 2a + 0$ $- a + (5 - 4)x = 2a$ $- a + (1)x = 2a$ $- a + x = 2a$ $a + (-a + x) = a + 2a$ $(a + (-a)) + x = (1 + 2)a$ $0 + x = 3a$ $x = 3a$

э

 Ω

[Linear combinations and coordinates](#page-46-0)

K ロ X x 個 X X 差 X X 差 X 2 → 2 差 → 9 Q Q →

Linear combinations and coordinates

Definition

A vector **v** is a **linear combination** of vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ if there are scalars $c_1, c_2, ..., c_k$ such that

$$
\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k
$$

The scalars $c_1, c_2, ..., c_k$ are called the **coefficients** of the linear combination.

 Ω

≮ロト ⊀個 ▶ ≮ ヨ ▶ ⊀ ヨ ▶

Let $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ 1 and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 $\big]$. We can use **u** and **v** to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1 \ 0 \end{bmatrix}$ θ $\Big]$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 $\big]$ locate the standard coordinate axes). We can use these new axes to determine a coordinate grid that will let us easily locate linear combinations of u and v.

メロトメ 倒 トメ 君 トメ 君 トー

Let $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ 1 and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 $\big]$. We can use **u** and **v** to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1 \ 0 \end{bmatrix}$ θ $\Big]$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 $\big]$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of u and v.

Let $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ 1 and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 $\big]$. We can use **u** and **v** to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1 \ 0 \end{bmatrix}$ θ $\Big]$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 $\big]$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of u and v.

$$
\mathbf{w} = -\begin{bmatrix} 3 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}
$$

Let $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ 1 and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 $\big]$. We can use **u** and **v** to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1 \ 0 \end{bmatrix}$ θ $\Big]$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 $\big]$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of u and v.

$$
\mathbf{w}=-\begin{bmatrix}3\\1\end{bmatrix}+2\begin{bmatrix}1\\2\end{bmatrix}=\begin{bmatrix}-1\\3\end{bmatrix}
$$

(Observe that -1 and 3 are the coordinates of w with respect to e_1 and e_2 .)

 299

 $\mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P}$

The vector versions of length, distance, and angle can all be described using the notion of the dot product of two vectors.

 Ω

メロトメ 倒 トメ ミトメ ミト

Definition

If

$$
\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}
$$

then the **dot product** $\mathbf{u} \cdot \mathbf{v}$ of **u** and **v** is defined by

$$
\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots u_n v_n
$$

つへへ

Э×

イロト イ御 トイミトイ

Definition

If

$$
\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}
$$

then the **dot product** $\mathbf{u} \cdot \mathbf{v}$ of **u** and **v** is defined by

 $\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + \cdots u_nv_n$

Since $\mathbf{u} \cdot \mathbf{v}$ is a number, it is sometimes called the scalar product of \mathbf{u} and \mathbf{v} .

スロメン 風 いえをいえをく

舌

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c be a scalar. Then

\n- $$
\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}
$$
 (commutativity)
\n- $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w}$ (distributivity)
\n- $(\mathbf{c} \mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$
\n- $\mathbf{u} \cdot \mathbf{u} \geq 0$
\n- $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$
\n

 299

メロトメ 伊 トメ ミトメ ミト

Each bullet must be proved. For instance,

$$
\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n
$$

$$
= v_1 u_1 + v_2 u_2 + \dots + v_n u_n = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \mathbf{v} \cdot \mathbf{u}
$$

重

 299

メロメ メ御 メメ きょく きょう

Show that $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$

重

 299

メロトメ 倒 トメ ミトメ ミトー

Show that $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$

$$
(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = (\mathbf{u} + \mathbf{v}) \cdot \mathbf{u} + (\mathbf{u} + \mathbf{v}) \cdot \mathbf{v}
$$

= $\mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v}$
= $\mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v}$
= $\mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$

重

 299

メロトメ 倒 トメ ミトメ ミトー

The length (or norm) of a vector
$$
\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n
$$
 is the nonnegative scalar defined by
\n
$$
||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}
$$

 2990

メロトメ 御 トメ 君 トメ 君 トリ 君 し

Theorem

Let **v** be a vector in \mathbb{R}^n and let c be a scalar. Then

$$
\bullet \, ||\mathbf{v}|| = 0 \text{ if and only if } \mathbf{v} = \mathbf{0}
$$

$$
\bullet \ | |c\mathbf{v}|| = |c| \ ||\mathbf{v}||
$$

重

 299

メロトメ 倒 トメ きょくきょう

Theorem

Let **v** be a vector in \mathbb{R}^n and let c be a scalar. Then

$$
\bullet \, ||\mathbf{v}|| = 0 \text{ if and only if } \mathbf{v} = \mathbf{0}
$$

$$
\bullet \ | |c\mathbf{v}|| = |c| \ ||\mathbf{v}||
$$

Proof.

(b)

$$
||c\mathbf{v}||^2 = c\mathbf{v} \cdot c\mathbf{v} = c^2v_1^2 + c^2v_2^2 + \dots + c^2v_n^2
$$

= $c^2(v_1^2 + v_2^2 + \dots + v_n^2)$
= $c^2(\mathbf{v} \cdot \mathbf{v}) = c^2 ||\mathbf{v}||^2$

Apply the square root function in both sides

$$
||c\mathbf{v}|| = |c| \, ||\mathbf{v}||
$$

A vector of length 1 is called a **unit vector**. In \mathbb{R}^2 , the set of all unit vectors can be identified with the unit circle, the circle of radius 1 centered at the origin.

∍

K ロ ▶ K 個 ▶ K

Ξ

 $2Q$

Given any nonzero vector **v**, we can always find a unit vector in the same direction as v by dividing v by its own length (or, equivalently, multiplying by $1/||v||$).

 299

メロメメ 御 メメ きょく ミメー

Given any nonzero vector **v**, we can always find a unit vector in the same direction as v by dividing v by its own length (or, equivalently, multiplying by $1/||v||$).

If $\mathbf{u} = (1/||\mathbf{v}||) \mathbf{v}$, then

メロトメ 倒 トメ ヨ トメ ヨ トー

Given any nonzero vector **v**, we can always find a unit vector in the same direction as v by dividing v by its own length (or, equivalently, multiplying by $1/||v||$). If $\mathbf{u} = (1/||\mathbf{v}||) \mathbf{v}$, then

$$
||\mathbf{u}|| = ||(1/||\mathbf{v}||)\mathbf{v}||
$$

= | 1/||\mathbf{v}|| ||\mathbf{v}||
= (1/||\mathbf{v}||)||\mathbf{v}||
= 1

э

 298

メロメメ 倒 メメ ミメメ ヨメー

Given any nonzero vector \bf{v} , we can always find a unit vector in the same direction as v by dividing v by its own length (or, equivalently, multiplying by $1/||v||$). If $\mathbf{u} = (1/||\mathbf{v}||) \mathbf{v}$, then

$$
||\mathbf{u}|| = ||(1/||\mathbf{v}||)\mathbf{v}||
$$

= | 1/||\mathbf{v}|| ||\mathbf{v}||
= (1/||\mathbf{v}||)||\mathbf{v}||
= 1

and **u** is in the same direction as **v**, since $1/||\mathbf{v}||$ is a positive scalar.

э

メロトメ 倒 トメ 君 トメ 君 トー

 QQ

Finding a unit vector in the same direction is often referred to as normalizing a vector.

 299

メロメ メ御 メメ きょく きょう

In general, in \mathbb{R}^n , we define unit vectors $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$, where \mathbf{e}_i has 1 in its i -th component and zeros elsewhere.

These vectors arise repeatedly in linear algebra and are called the standard unit vectors.

 Ω

メロメメ 倒 メメ きょくきょう

$$
\text{Normalize the vector } \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}
$$

 299

メロトメ 御 トメ 君 トメ 君 トリ 君 し

$$
\text{Normalize the vector } \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}
$$

$$
||\mathbf{v}|| = \sqrt{2^2 + (-1)^2 + 3^2} = \sqrt{14}
$$

 299

メロトメ 御 トメ 君 トメ 君 トリ 君 し
Example

$$
\text{Normalize the vector } \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}
$$

$$
||\mathbf{v}|| = \sqrt{2^2 + (-1)^2 + 3^2} = \sqrt{14}
$$

So, the unit vector in the same direction as \bf{v} is given by

$$
\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v} = \frac{1}{\sqrt{14}} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{14} \\ -1/\sqrt{14} \\ 3/\sqrt{14} \end{bmatrix}
$$

(CONAHCYT INAOE) **[Linear algebra](#page-0-0)** Linear algebra July 9 2024 35 / 56

重

 299

メロメメ 倒 メメ きょくきょう

Theorem

The Cauchy-Schwarz inequality. For all vectors $\mathbf u$ and $\mathbf v$ in $\mathbb R^n$

 $|u \cdot v| \leq ||u|| \, ||v||$

Proof.

This inequality is equivalent to

 $(\boldsymbol{\mathsf{u}}\cdot\boldsymbol{\mathsf{v}})^2\leq ||\boldsymbol{\mathsf{u}}||^2\ ||\boldsymbol{\mathsf{v}}||^2$

Theorem

The Cauchy-Schwarz inequality. For all vectors $\mathbf u$ and $\mathbf v$ in $\mathbb R^n$

 $|u \cdot v| \leq ||u|| \, ||v||$

Proof.

This inequality is equivalent to

$$
(\mathbf{u}\cdot\mathbf{v})^2\leq ||\mathbf{u}||^2~||\mathbf{v}||^2
$$

In
$$
\mathbb{R}^2
$$
, $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

Theorem

The Cauchy-Schwarz inequality. For all vectors $\mathbf u$ and $\mathbf v$ in $\mathbb R^n$

 $|u \cdot v| \leq ||u|| \, ||v||$

Proof.

This inequality is equivalent to

$$
(\mathbf{u}\cdot\mathbf{v})^2\leq ||\mathbf{u}||^2 \, \, ||\mathbf{v}||^2
$$

In
$$
\mathbb{R}^2
$$
, $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$
\n
$$
(u_1v_1 + u_2v_2)^2 \leq (u_1^2 + u_2^2)(v_1^2 + v_2^2)
$$
\n
$$
u_1^2v_1^2 + 2u_1v_1u_2v_2 + u_2^2v_2^2 \leq^2 u_1^2v_1^2 + u_1^2v_2^2 + u_2^2v_1^2 + u_2^2v_2^2
$$
\n
$$
2u_1v_1u_2v_2 \leq^2 u_1^2v_2^2 + u_2^2v_1^2
$$

(CONAHCYT INAOE) [Linear algebra](#page-0-0) July 9 2024 36 / 56

$2u_1v_1u_2v_2 \leq u_1^2v_2^2 + u_2^2v_1^2$ $2(u_1v_2)(u_2v_1) \leq (u_1v_2)^2 + (u_2v_1)^2$

K ロ K K 御 K K 語 K K 語 K

Ε

$$
2u_1v_1u_2v_2 \leq^2 u_1^2v_2^2 + u_2^2v_1^2
$$

$$
2(u_1v_2)(u_2v_1) \leq^2 (u_1v_2)^2 + (u_2v_1)^2
$$

Let $a = u_1v_2$ and $b = u_2v_1$

$$
2ab \leq^? a^2 + b^2
$$

$$
0 \leq^? a^2 + b^2 - 2ab
$$

(CONAHCYT INAOE) [Linear algebra](#page-0-0) July 9 2024 37 / 56

 A (D) A (D) A (E) A (E) A (E)

 290

Ε

$$
2u_1v_1u_2v_2 \leq^2 u_1^2v_2^2 + u_2^2v_1^2
$$

$$
2(u_1v_2)(u_2v_1) \leq^2 (u_1v_2)^2 + (u_2v_1)^2
$$

Let $a = u_1v_2$ and $b = u_2v_1$

$$
2ab \leq^? a^2 + b^2
$$

$$
0 \leq^? a^2 + b^2 - 2ab
$$

Since

$$
a^2 + b^2 - 2ab = (a - b)^2 \ge 0
$$

Ε

 A (D) A (D) A (E) A (E) A (E)

 290

$$
2u_1v_1u_2v_2 \leq^2 u_1^2v_2^2 + u_2^2v_1^2
$$

$$
2(u_1v_2)(u_2v_1) \leq^2 (u_1v_2)^2 + (u_2v_1)^2
$$

Let $a = u_1v_2$ and $b = u_2v_1$

$$
2ab \leq^? a^2 + b^2
$$

$$
0 \leq^? a^2 + b^2 - 2ab
$$

Since

$$
a^2 + b^2 - 2ab = (a - b)^2 \ge 0
$$

we can remove the "?" sign from all the previous inequalities. (In a conventional style, the proof goes backward).

イロト イ部 トイモ トイモト

 Ω

€

Theorem

The triangle inequality. For all vectors $\mathbf u$ and $\mathbf v$ in $\mathbb R^n$

 $||u + v|| \le ||u|| + ||v||$

Proof.

$$
||\mathbf{u} + \mathbf{v}||^2 = (u_1 + v_1)^2 + \dots + (u_n + v_n)^2
$$

= $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$
= $\mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$
 $\le ||\mathbf{u}||^2 + 2|\mathbf{u} \cdot \mathbf{v}| + ||\mathbf{v}||^2$
 $\le ||\mathbf{u}||^2 + 2||\mathbf{u}|| ||\mathbf{v}|| + ||\mathbf{v}||^2$
= $(||\mathbf{u}|| + ||\mathbf{v}||)^2$

É

 $2Q$

メロトメ 伊 トメ ミトメ ミト

Theorem

The triangle inequality. For all vectors $\mathbf u$ and $\mathbf v$ in $\mathbb R^n$

 $||u + v|| \le ||u|| + ||v||$

Proof.

$$
||\mathbf{u} + \mathbf{v}||^{2} = (u_{1} + v_{1})^{2} + \dots + (u_{n} + v_{n})^{2}
$$

= $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$
= $\mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$
 $\le ||\mathbf{u}||^{2} + 2||\mathbf{u} \cdot \mathbf{v}| + ||\mathbf{v}||^{2}$
= $(||\mathbf{u}|| + ||\mathbf{v}||)^{2}$

(CONAHCYT INAOE) **[Linear algebra](#page-0-0)** Linear algebra July 9 2024 38 / 56

メロトメ 伊 トメ ミトメ ミト

 $2Q$

É

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

(CONAHCYT INAOE) [Linear algebra](#page-0-0) July 9 2024 40 / 56

造っ

メロトメ 倒 トメ ミトメ ミトー

 2990

(CONAHCYT INAOE) [Linear algebra](#page-0-0) July 9 2024 40 / 56

重

 299

メロトメ 倒 トメ ミトメ ミトー

Definition

The distance $d(\mathbf{u}, \mathbf{v})$ between vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is defined by

 $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$

 299

メロメメ 倒 メメ きょくきょう

Definition

The distance $d(\mathbf{u}, \mathbf{v})$ between vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is defined by

 $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$

 $2Q$

メロメ メ御 メメ きょく きょう

Example

Find the distance between
$$
\mathbf{u} = \begin{bmatrix} \sqrt{2} \\ 1 \\ -1 \end{bmatrix}
$$
 and $\mathbf{v} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix}$

K ロ X x 個 X X 差 X X 差 X 2 → 2 差 → 9 Q Q →

Example

Find the distance between
$$
\mathbf{u} = \begin{bmatrix} \sqrt{2} \\ 1 \\ -1 \end{bmatrix}
$$
 and $\mathbf{v} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix}$

$$
\mathbf{u} - \mathbf{v} = \begin{bmatrix} \sqrt{2} \\ -1 \\ 1 \end{bmatrix}
$$

So,

$$
d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(\sqrt{2})^2 + (-1)^2 + 1^2} =
$$

(CONAHCYT INAOE) [Linear algebra](#page-0-0) July 9 2024 42 / 56

重

 298

√ $4 = 2$

メロメ オ御 ドメ 君 ドメ 君 ドー

KO K K @ K K W X K W X K W X K W X K O

The dot product can also be used to calculate the angle between a pair of vectors. In \mathbb{R}^2 or \mathbb{R}^3 , the angle between the nonzero vector ${\bf u}$ and ${\bf v}$ will refer to the angle θ determined by these vectors that satisfies $0 \le \theta \le 180$.

Consider the triangle with sides **u**, **v**, and **u** – **v**, where θ is the angle between **u** and v. Applying the law of cosines to this triangle yields

$$
||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta
$$

Э×

メロトメ 倒下 メミトメ

 $2Q$

After simplification, we get

 $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta$

 299

メロトメ 倒 トメ ミトメ ミトー

After simplification, we get

 $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta$

Definition

For nonzero vectors **u** and **v** in \mathbb{R}^n ,

$$
\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||}
$$

After simplification, we get

 $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta$

Definition

For nonzero vectors **u** and **v** in \mathbb{R}^n ,

$$
\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||}
$$

By Cauchy-Schwarz $\Big|$ $\frac{u \cdot v}{||u|| \cdot ||v||}$ ≤ 1. So, $\frac{u \cdot v}{||u|| \cdot ||v||}$ take values between -1 and 1.

KORK EXTERNS ORA

We now generalize the idea of perpendicularity to vectors in \mathbb{R}^n , where it is called orthogonality.

In \mathbb{R}^2 or \mathbb{R}^3 , two nonzero vectors ${\bf u}$ and ${\bf v}$ are perpendicular if the angle θ between them is a right angle - that is, if $\theta = \pi/2$ radians, or 90.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Thus,

$$
\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||} = \cos 90 = 0
$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

 $2Q$

イロト イ部 トイ ヨ トイ ヨ トー

Thus,

$$
\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||} = \cos 90 = 0
$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Definition

Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

メロメ メタメメ ミメメ ヨメ

 $2Q$

Thus,

$$
\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||} = \cos 90 = 0
$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Definition

Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

Since $0 \cdot v$ for every vector in \mathbb{R}^n , the zero vector is orthogonal to every vector.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Thus,

$$
\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||} = \cos 90 = 0
$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Definition

Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

Since $0 \cdot v$ for every vector in \mathbb{R}^n , the zero vector is orthogonal to every vector.

Is the zero vector orthogonal to itself?

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Theorem

Pythagora's theorem. For all vectors u and v in \mathbb{R}^n

$$
||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2
$$

if and only if u and v are orthogonal.

 299

メロトメ 御 トメ ミトメ ミト

[Projections](#page-101-0)

 299

メロメメ 倒 メメ きょくきょう

Projections

Consider two nonzero vectors \boldsymbol{u} and \boldsymbol{v} . Let \boldsymbol{p} be the vector obtained by dropping a perpendicular from the head of **v** onto **u** and let θ be the angle between **u** and **v**.

 Ω

K ロ ト K 御 ト K ミ ト

Projections

Definition

If ${\bf u}$ and ${\bf v}$ are vectors in \mathbb{R}^n and ${\bf u}\neq {\bf 0}$, the projection of ${\bf v}$ onto ${\bf u}$ is the vector $proj_{\mathbf{u}(\mathbf{v})}$ defined by

$$
proj_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

(You can prove it for \mathbb{R}^2)

つへへ

メロメ メタメメ ミメメ ヨメ

KO K K @ K K W X K W X K W X K W X K O

Homework

- \bullet You have three vectors **u**, **v**, and **w** such that **u** \cdot **v** = **u** \cdot **w**. Is always **v** = **w**?
- Prove that $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta$ (slide 46).
- Prove the Pythagora's theorem for vectors in \mathbb{R}^n (slide 49).
- Prove the definition of projection over \mathbb{R}^2 (slide 52).
- $||proj_{\mathbf{u}}(\mathbf{v})|| \le ||\mathbf{v}||$ in \mathbb{R}^2 and \mathbb{R}^3 (Can you see why?).
	- Show that this inequality is true in \mathbb{R}^n .
	- Show that this inequality is equivalent to the Cauchy-Schwarz inequality.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Next topics

Matrices

メロメ オ御 ドメ 君 ドメ 君 ドー

 \equiv

 299

Thank you

重 (CONAHCYT INAOE) [Linear algebra](#page-0-0) July 9 2024 56 / 56 $\,$ 56 $\$

 299

メロメメ 倒 メメ ミメメ ミメ