

Jesús García Díaz

CONAHCYT INAOE

July 9 2024

NAHC'	

2

1/56

Contents

Vectors

- 2 Linear combinations and coordinates
- 3 The dot product

Distance

Ending

Bibliography

イロト イヨト イヨト イヨト

http://linear.ups.edu/

100	NAH	CYT	INAC	E)

2

(CONAHCYT INAOI	

July 9 2024 4 / 56

æ

▲口> ▲圖> ▲理> ▲理>

Vectors

Physics

1

- Usually represented by arrows that have:
 - magnitude
 - and direction

2

Vectors

Physics

1

- Usually represented by arrows that have:
 - magnitude
 - and direction

Computer science

• List of numbers.

< ロ > < 回 > < 回 > < 回 > < 回 >

July 9 2024 5 / 56

2

Physics

- Usually represented by arrows that have:
 - magnitude
 - and direction

Mathematics

- Anything.
- As long as it respects certain rules.

Computer science

• List of numbers.

< ロ > < 回 > < 回 > < 回 > < 回 >

э

5/56

Definition

A vector is a directed line segment that corresponds to a displacement from one point A to another point B. The vector from A to B is denoted by \overrightarrow{AB} ; the point A is called its **initial point**, or **tail**, and the point B is called its **terminal point** or **head**. Often, a vector is simply denoted by a single boldface, lowercase letters such as **v**.

(日) (四) (日) (日) (日)

Definition

A vector is a directed line segment that corresponds to a displacement from one point A to another point B. The vector from A to B is denoted by \overrightarrow{AB} ; the point A is called its **initial point**, or **tail**, and the point B is called its **terminal point** or **head**. Often, a vector is simply denoted by a single boldface, lowercase letters such as **v**.

CO	CVT	INAOE	
		INAUE	

(日) (四) (日) (日) (日)

The set of all points in the plane corresponds to the set of all vector whose tail are at the origin O.

Definition

Vectors with its tail at the origin are called **position vectors**.

Point A corresponds to the position vector $\mathbf{a} = \overrightarrow{OA} = [3, 2]$. The other vectors in the figure are $\mathbf{b} = [-1, 3]$ and $\mathbf{c} = [2, -1]$.

Image: A matching of the second se

Point A corresponds to the position vector $\mathbf{a} = \overrightarrow{OA} = [3, 2]$. The other vectors in the figure are $\mathbf{b} = [-1, 3]$ and $\mathbf{c} = [2, -1]$.

The individual coordinates (3 and 2 in the case of \mathbf{a}) are called the **components** of the vector.

(日) (四) (日) (日) (日)

Two vectors are equal if and only if their corresponding components are equal. Thus, [x, y] = [1, 5] implies that x = 1 and y = 5.

Using column vectors instead of row vectors is frequently convenient.

So, [3,2] can be represented as $\begin{vmatrix} 3\\2 \end{vmatrix}$.

We cannot draw the vector $[0,0] = \overrightarrow{OO}$ from the origin to itself. Nevertheless, it is a perfectly good vector and has a special name: the **zero vector**. The zero vector is denoted by **0**.

(日) (四) (日) (日) (日)

What can you say about these three vectors?

2

・ロト ・回ト ・ヨト

What can you say about these three vectors?

By setting the tail of each vector in the origin, we observe they all coincide.

AHCYT	

New vectors from old

We often want to follow one vector by another. This leads to the notion of $\ensuremath{\textit{vector}}$ addition.

If we follow u by v, we can visualize the total displacement as a third vector, denoted by u+v.

Image: A math a math

New vectors from old

In general, if $\mathbf{u} = [u_1, u_2]$ and $\mathbf{v} = [v_1, v_2]$, the their sum $\mathbf{u} + \mathbf{v}$ is the vector

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2]$$

New vectors from old

Our next vector operation is **scalar multiplication**. Given a vector \mathbf{v} and a real number c, the **scalar multiplication** $c\mathbf{v}$ is the vector contained by multiplying each component of \mathbf{v} by c. In general,

$$c\mathbf{v} = c[v_1, v_2] = [cv_1, cv_2]$$

(日) (四) (日) (日) (日)

New vectors from old

Our next vector operation is **scalar multiplication**. Given a vector \mathbf{v} and a real number c, the **scalar multiplication** $c\mathbf{v}$ is the vector contained by multiplying each component of \mathbf{v} by c. In general,

$$c\mathbf{v} = c[v_1, v_2] = [cv_1, cv_2]$$

Geometrically, $c\mathbf{v}$ is a "scaled" version of \mathbf{v} .

	INAOE)

• • • • • • • • • • •

 \mathbb{R}^n is a shorthand for $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$, the cartesian product of \mathbb{R} with itself n times. So, it is the set of all ordered n-tuples of real numbers written as row or column vectors. Thus, a vector $\mathbf{v} \in \mathbb{R}^n$ is of the form

$$\begin{bmatrix} v_1, v_2, .., v_n \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

The individual entries of **v** are its components; v_i is called the *i*-th component.

(日) (四) (日) (日) (日)

We extend the definitions of vector addition and scalar multiplication to \mathbb{R}^n in the obvious way:

If $\mathbf{u} = [u_1, u_2, ..., u_n]$ and $\mathbf{v} = [v_1, v_2, ..., v_n]$, the *i*-th component of $\mathbf{u} + \mathbf{v}$ is $u_i + v_i$ and the *i*-th component of \mathbf{cv} is just cv_i .

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

(co)	NAHCY	T IND	
(COI			NUE)

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

• $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)

イロン イ団 とく ヨン イヨン

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- u + 0 = u (zero vector)

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- u + 0 = u (zero vector)
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverses)

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- u + 0 = u (zero vector)
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- u + 0 = u (zero vector)
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity across scalar addition)

イロト 不得 トイヨト イヨト

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- u + 0 = u (zero vector)
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity across scalar addition)
- $c(d\mathbf{u}) = (cd)\mathbf{u}$ (scalar multiplication associativity)

イロト 不得 トイヨト イヨト

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- u + 0 = u (zero vector)
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity across scalar addition)
- $c(d\mathbf{u}) = (cd)\mathbf{u}$ (scalar multiplication associativity)
- 1**u** = **u** (one)

イロト 不得 トイヨト イヨト

Each bullet must be proved. In general, they all inherit the properties of the operations over real numbers. For instance,

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ v_2 + u_2 \\ \vdots \\ v_n + u_n \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \mathbf{v} + \mathbf{u}$$

July 9 2024

э

イロト イヨト イヨト イヨト

18/56

Simplify (x in terms of a)

 $5\mathbf{x} - \mathbf{a} = 2(\mathbf{a} + 2\mathbf{x})$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Simplify (x in terms of a)

$$\begin{aligned} &5\mathbf{x} - \mathbf{a} = 2(\mathbf{a} + 2\mathbf{x}) \\ &5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 2(2\mathbf{x}) \end{aligned}$$

Simplify (x in terms of a)

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

Simplify (x in terms of a)

$$5\mathbf{x} - \mathbf{a} = 2(\mathbf{a} + 2\mathbf{x})$$

$$5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 2(2\mathbf{x})$$

$$5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + (2 \cdot 2)\mathbf{x}$$

$$5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 4\mathbf{x}$$

э.

Simplify (x in terms of a) 5x - a = 2(a + 2x) 5x - a = 2a + 2(2x) $5x - a = 2a + (2 \cdot 2)x$ 5x - a = 2a + 4x (5x - a) - 4x = (2a + 4x) - 4x

2

< □ > < □ > < □ > < □ > < □ >

Simplify (x in terms of a) 5x - a = 2(a + 2x) 5x - a = 2a + 2(2x) $5x - a = 2a + (2 \cdot 2)x$ 5x - a = 2a + 4x (5x - a) - 4x = (2a + 4x) - 4x(-a + 5x) - 4x = 2a + (4x - 4x)

э

イロト イヨト イヨト

Simplify (x in terms of a) 5x - a = 2(a + 2x) 5x - a = 2a + 2(2x) $5x - a = 2a + (2 \cdot 2)x$ 5x - a = 2a + 4x (5x - a) - 4x = (2a + 4x) - 4x (-a + 5x) - 4x = 2a + (4x - 4x)- a + (5x - 4x) = 2a + 0

э

Simplify (x in terms of a) 5x - a = 2(a + 2x) 5x - a = 2a + 2(2x) $5x - a = 2a + (2 \cdot 2)x$ 5x - a = 2a + 4x (5x - a) - 4x = (2a + 4x) - 4x (-a + 5x) - 4x = 2a + (4x - 4x)- a + (5x - 4x) = 2a + 0

$$-\mathbf{a} + (5-4)\mathbf{x} = 2\mathbf{a}$$

Simplify (x in terms of a) 5x - a = 2(a + 2x) 5x - a = 2a + 2(2x) $5x - a = 2a + (2 \cdot 2)x$ 5x - a = 2a + 4x (5x - a) - 4x = (2a + 4x) - 4x (-a + 5x) - 4x = 2a + (4x - 4x)- a + (5x - 4x) = 2a + 0

$$- \mathbf{a} + (5 - 4)\mathbf{x} = 2\mathbf{a}$$

 $- \mathbf{a} + (1)\mathbf{x} = 2\mathbf{a}$

イロト イボト イヨト イヨト

э

Simplify (x in terms of a) 5x - a = 2(a + 2x) -a + (5 - 4)x = 2a 5x - a = 2a + 2(2x) -a + (1)x = 2a $5x - a = 2a + (2 \cdot 2)x$ -a + x = 2a 5x - a = 2a + 4x (5x - a) - 4x = (2a + 4x) - 4x (-a + 5x) - 4x = 2a + (4x - 4x)-a + (5x - 4x) = 2a + 0

э

Simplify (x in terms of a) 5x - a = 2(a + 2x) 5x - a = 2a + 2(2x) $5x - a = 2a + (2 \cdot 2)x$ 5x - a = 2a + 4x (5x - a) - 4x = (2a + 4x) - 4x (-a + 5x) - 4x = 2a + (4x - 4x)- a + (5x - 4x) = 2a + 0

$$a + (5 - 4)x = 2a$$

 $-a + (1)x = 2a$
 $-a + x = 2a$
 $a + (-a + x) = a + 2a$

イロト イポト イヨト イヨト

July 9 2024 1

э

Simplify (x in terms of a) 5x - a = 2(a + 2x) 5x - a = 2a + 2(2x) $5x - a = 2a + (2 \cdot 2)x$ 5x - a = 2a + 4x (5x - a) - 4x = (2a + 4x) - 4x (-a + 5x) - 4x = 2a + (4x - 4x)- a + (5x - 4x) = 2a + 0

$$- a + (5 - 4)x = 2a$$

- a + (1)x = 2a
- a + x = 2a
a + (-a + x) = a + 2a
(a + (-a)) + x = (1 + 2)a

(日) (四) (日) (日) (日)

July 9 2024

Simplify (x in terms of a) 5x - a = 2(a + 2x) 5x - a = 2a + 2(2x) $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + (2 \cdot 2)x$ 5x - a = 2a + 4x (5x - a) - 4x = (2a + 4x) - 4x (-a + 5x) - 4x = 2a + (4x - 4x) -a + (5x - 4x) = 2a + (4x - 4x) -a + (5x - 4x) = 2a + 0-a + (5x - 4x) = 2a + 0

July 9 2024

Simplify (x in terms of a) 5x - a = 2(a + 2x) 5x - a = 2a + 2(2x) 5x - a = 2a + 2(2x) $5x - a = 2a + (2 \cdot 2)x$ $5x - a = 2a + (2 \cdot 2)x$ 5x - a = 2a + 4x (5x - a) - 4x = (2a + 4x) - 4x (-a + 5x) - 4x = 2a + (4x - 4x) -a + (5x - 4x) = 2a + 0 a + (-a + x) = a + 2a (a + (-a)) + x = (1 + 2)a0 + x = 3a

Linear combinations and coordinates

・ロト ・回ト ・ヨト ・ヨト

Linear combinations and coordinates

Definition

A vector **v** is a **linear combination** of vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ if there are scalars $c_1, c_2, ..., c_k$ such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

The scalars $c_1, c_2, ..., c_k$ are called the **coefficients** of the linear combination.

イロト 不得 トイヨト イヨト

Let $\mathbf{u} = \begin{bmatrix} 3\\1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1\\2 \end{bmatrix}$. We can use \mathbf{u} and \mathbf{v} to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of \mathbf{u} and \mathbf{v} .

Let $\mathbf{u} = \begin{bmatrix} 3\\1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1\\2 \end{bmatrix}$. We can use \mathbf{u} and \mathbf{v} to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of \mathbf{u} and \mathbf{v} .

(日) (四) (日) (日) (日)

Let $\mathbf{u} = \begin{bmatrix} 3\\1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1\\2 \end{bmatrix}$. We can use \mathbf{u} and \mathbf{v} to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of \mathbf{u} and \mathbf{v} .

$$\mathbf{w} = -\begin{bmatrix}3\\1\end{bmatrix} + 2\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}-1\\3\end{bmatrix}$$

(日) (四) (日) (日) (日)

22 / 56

Let $\mathbf{u} = \begin{bmatrix} 3\\1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1\\2 \end{bmatrix}$. We can use \mathbf{u} and \mathbf{v} to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of \mathbf{u} and \mathbf{v} .

$$\mathbf{w} = - \begin{bmatrix} 3 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

(Observe that -1 and 3 are the coordinates of **w** with respect to \mathbf{e}_1 and \mathbf{e}_2 .)

(日) (四) (日) (日) (日)

100		AT INC	
ICOI	VAHC	Y I IIN/	AUE

▲□▶ ▲圖▶ ▲国▶ ▲国▶

The vector versions of length, distance, and angle can all be described using the notion of the dot product of two vectors.

< □ > < □ > < □ > < □ > < □ >

Definition

lf

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

then the dot product $\mathbf{u} \cdot \mathbf{v}$ of \mathbf{u} and \mathbf{v} is defined by

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$

(CON	ΙΑΗΟ	T IN	AOE)
	IANCI		AUE)

< □ > < □ > < □ > < □ > < □ >

Definition

lf

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

then the dot product $\mathbf{u} \cdot \mathbf{v}$ of \mathbf{u} and \mathbf{v} is defined by

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$

Since $\mathbf{u} \cdot \mathbf{v}$ is a number, it is sometimes called the scalar product of \mathbf{u} and \mathbf{v} .

(CONAHCYT INAC	ЭΕΙ

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c be a scalar. Then

•
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
 (commutativity)

•
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w}$$
 (distributivity)

•
$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$$

•
$$\mathbf{u} \cdot \mathbf{u} \geq 0$$

•
$$\mathbf{u} \cdot \mathbf{u} = 0$$
 if and only if $\mathbf{u} = \mathbf{0}$

・ロト ・回ト ・ヨト ・ヨト

Each bullet must be proved. For instance,

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$
$$= v_1 u_1 + v_2 u_2 + \dots + v_n u_n = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \mathbf{v} \cdot \mathbf{u}$$

2

・ロト ・回ト ・ヨト ・ヨト

Show that $(\mathbf{u}+\mathbf{v})\cdot(\mathbf{u}+\mathbf{v})=\mathbf{u}\cdot\mathbf{u}+2(\mathbf{u}\cdot\mathbf{v})+\mathbf{v}\cdot\mathbf{v}$

2

・ロト ・四ト ・ヨト ・ヨト

Show that $(\mathbf{u}+\mathbf{v})\cdot(\mathbf{u}+\mathbf{v})=\mathbf{u}\cdot\mathbf{u}+2(\mathbf{u}\cdot\mathbf{v})+\mathbf{v}\cdot\mathbf{v}$

$$\begin{aligned} (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) &= (\mathbf{u} + \mathbf{v}) \cdot \mathbf{u} + (\mathbf{u} + \mathbf{v}) \cdot \mathbf{v} \\ &= \mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v} \\ &= \mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v} \\ &= \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v} \end{aligned}$$

2

28 / 56

The length (or norm) of a vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$$
 is the nonnegative scalar defined by
$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

◆□ → ◆□ → ◆臣 → ◆臣 → ○臣 -

Theorem

Let \mathbf{v} be a vector in \mathbb{R}^n and let c be a scalar. Then

•
$$||\mathbf{v}|| = 0$$
 if and only if $\mathbf{v} = \mathbf{0}$

$$\bullet ||c\mathbf{v}|| = |c| ||\mathbf{v}||$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Theorem

Let \mathbf{v} be a vector in \mathbb{R}^n and let c be a scalar. Then

•
$$||\mathbf{v}|| = 0$$
 if and only if $\mathbf{v} = \mathbf{0}$

$$||c\mathbf{v}|| = |c| ||\mathbf{v}||$$

Proof.

4

(b)

$$\begin{split} ||c\mathbf{v}||^2 &= c\mathbf{v} \cdot c\mathbf{v} = c^2 v_1^2 + c^2 v_2^2 + \dots + c^2 v_n^2 \\ &= c^2 (v_1^2 + v_2^2 + \dots + v_n^2) \\ &= c^2 (\mathbf{v} \cdot \mathbf{v}) = c^2 ||\mathbf{v}||^2 \end{split}$$

Apply the square root function in both sides

$$||c\mathbf{v}|| = |c| \ ||\mathbf{v}||$$

A vector of length 1 is called a **unit vector**. In \mathbb{R}^2 , the set of all unit vectors can be identified with the unit circle, the circle of radius 1 centered at the origin.

(CO	ΝΑΗΟ	T IN	
	NARCI		AUE)

Image: A math a math

Given any nonzero vector \mathbf{v} , we can always find a unit vector in the same direction as \mathbf{v} by dividing \mathbf{v} by its own length (or, equivalently, multiplying by $1/||\mathbf{v}||$).

Given any nonzero vector \mathbf{v} , we can always find a unit vector in the same direction as \mathbf{v} by dividing \mathbf{v} by its own length (or, equivalently, multiplying by $1/||\mathbf{v}||$). If $\mathbf{u} = (1/||\mathbf{v}||) \mathbf{v}$, then

Given any nonzero vector \mathbf{v} , we can always find a unit vector in the same direction as \mathbf{v} by dividing \mathbf{v} by its own length (or, equivalently, multiplying by $1/||\mathbf{v}||$). If $\mathbf{u} = (1/||\mathbf{v}||) \mathbf{v}$, then

$$\begin{aligned} |\mathbf{u}|| &= ||(1/||\mathbf{v}||)\mathbf{v}|| \\ &= |1/||\mathbf{v}|| ||\mathbf{v}|| \\ &= (1/||\mathbf{v}||)||\mathbf{v}|| \\ &= 1 \end{aligned}$$

Given any nonzero vector **v**, we can always find a unit vector in the same direction as **v** by dividing **v** by its own length (or, equivalently, multiplying by $1/||\mathbf{v}||$). If $\mathbf{u} = (1/||\mathbf{v}||) \mathbf{v}$, then

$$\begin{aligned} |\mathbf{u}|| &= ||(1/||\mathbf{v}||)\mathbf{v}|| \\ &= |1/||\mathbf{v}|| |||\mathbf{v}|| \\ &= (1/||\mathbf{v}||)||\mathbf{v}|| \\ &= 1 \end{aligned}$$

and **u** is in the same direction as **v**, since $1/||\mathbf{v}||$ is a positive scalar.

Finding a unit vector in the same direction is often referred to as **normalizing** a vector.

2

In general, in \mathbb{R}^n , we define unit vectors $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$, where \mathbf{e}_i has 1 in its *i*-th component and zeros elsewhere.

These vectors arise repeatedly in linear algebra and are called the **standard unit vectors**.

イロン イ団 とく ヨン イヨン

Normalize the vector
$$\mathbf{v} = \begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix}$$

◆□ > ◆圖 > ◆臣 > ◆臣 > ○臣

Normalize the vector
$$\mathbf{v} = \begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix}$$

$$||\mathbf{v}|| = \sqrt{2^2 + (-1)^2 + 3^2} = \sqrt{14}$$

CO	NIA LI	CYT		OE)
CO	ин		TIN/A	UE)

◆□ > ◆圖 > ◆臣 > ◆臣 > ○臣

Example

Normalize the vector
$$\mathbf{v} = \begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix}$$

$$||\mathbf{v}|| = \sqrt{2^2 + (-1)^2 + 3^2} = \sqrt{14}$$

So, the unit vector in the same direction as ${\boldsymbol{v}}$ is given by

$$\mathbf{u} = \frac{1}{||\mathbf{v}||} \mathbf{v} = \frac{1}{\sqrt{14}} \begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{14}\\ -1/\sqrt{14}\\ 3/\sqrt{14} \end{bmatrix}$$

2

Theorem

The Cauchy-Schwarz inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

 $|\mathbf{u}\cdot\mathbf{v}|\leq ||\mathbf{u}||~||\mathbf{v}||$

Proof.

This inequality is equivalent to

 $(\mathbf{u}\cdot\mathbf{v})^2 \leq ||\mathbf{u}||^2 \ ||\mathbf{v}||^2$

Theorem

The Cauchy-Schwarz inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

 $|\mathbf{u}\cdot\mathbf{v}|\leq ||\mathbf{u}||~||\mathbf{v}||$

Proof.

This inequality is equivalent to

$$(\mathbf{u} \cdot \mathbf{v})^2 \le ||\mathbf{u}||^2 ||\mathbf{v}||^2$$

In
$$\mathbb{R}^2$$
, $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

Theorem

The Cauchy-Schwarz inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

 $|\mathbf{u}\cdot\mathbf{v}|\leq ||\mathbf{u}||~||\mathbf{v}||$

Proof.

This inequality is equivalent to

$$(\mathbf{u} \cdot \mathbf{v})^2 \le ||\mathbf{u}||^2 ||\mathbf{v}||^2$$

In
$$\mathbb{R}^2$$
, $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$
$$(u_1v_1 + u_2v_2)^2 \leq^? (u_1^2 + u_2^2)(v_1^2 + v_2^2)$$
$$u_1^2v_1^2 + 2u_1v_1u_2v_2 + u_2^2v_2^2 \leq^? u_1^2v_1^2 + u_1^2v_2^2 + u_2^2v_1^2 + u_2^2v_2^2$$
$$2u_1v_1u_2v_2 \leq^? u_1^2v_2^2 + u_2^2v_1^2$$

(CONAHCYT INAOE)

Proof (cont.)

 $2u_1v_1u_2v_2 \leq^? u_1^2v_2^2 + u_2^2v_1^2$ $2(u_1v_2)(u_2v_1) \leq^? (u_1v_2)^2 + (u_2v_1)^2$

CO	NAH	T 11		
CO	NAH		N M	UE,

イロト イヨト イヨト イヨト

Proof (cont.)

$$2u_1v_1u_2v_2 \leq^? u_1^2v_2^2 + u_2^2v_1^2$$

$$2(u_1v_2)(u_2v_1) \leq^? (u_1v_2)^2 + (u_2v_1)^2$$

Let $a = u_1v_2$ and $b = u_2v_1$

$$2ab \leq a^{?} a^{2} + b^{2}$$

 $0 \leq a^{?} a^{2} + b^{2} - 2ab^{2}$

(CONAHCYT INAOE)

July 9 2024

メロト メポト メヨト メヨト

37 / 56

Proof (cont.)

$$2u_1v_1u_2v_2 \leq^? u_1^2v_2^2 + u_2^2v_1^2$$

$$2(u_1v_2)(u_2v_1) \leq^? (u_1v_2)^2 + (u_2v_1)^2$$

Let $a = u_1v_2$ and $b = u_2v_1$

$$2ab \leq a^{?} a^{2} + b^{2}$$

 $0 \leq a^{?} a^{2} + b^{2} - 2ab^{2}$

Since

$$a^{2} + b^{2} - 2ab = (a - b)^{2} \ge 0$$

メロト メロト メヨト メヨト

37 / 56

Proof (cont.)

$$2u_1v_1u_2v_2 \leq^? u_1^2v_2^2 + u_2^2v_1^2$$

$$2(u_1v_2)(u_2v_1) \leq^? (u_1v_2)^2 + (u_2v_1)^2$$

Let $a = u_1v_2$ and $b = u_2v_1$

$$2ab \leq a^{?} a^{2} + b^{2}$$

 $0 \leq a^{?} a^{2} + b^{2} - 2ab^{2}$

Since

$$a^{2} + b^{2} - 2ab = (a - b)^{2} \ge 0$$

we can remove the "?" sign from all the previous inequalities. (In a conventional style, the proof goes backward). $\hfill\square$

(CONAHCYT INAOE)	

< □ > < @ > < 클 > < 클 > July 9 2024

37 / 56

Theorem

The triangle inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

 $||\mathbf{u}+\mathbf{v}|| \leq ||\mathbf{u}|| + ||\mathbf{v}||$

Proof.

$$||\mathbf{u} + \mathbf{v}||^{2} = (u_{1} + v_{1})^{2} + \dots + (u_{n} + v_{n})^{2}$$

= $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$
= $\mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$
 $\leq ||\mathbf{u}||^{2} + 2||\mathbf{u} \cdot \mathbf{v}| + ||\mathbf{v}||^{2}$
 $\leq ||\mathbf{u}||^{2} + 2||\mathbf{u}|| ||\mathbf{v}|| + ||\mathbf{v}||^{2}$
= $(||\mathbf{u}|| + ||\mathbf{v}||)^{2}$

イロン イロン イヨン イヨン

Theorem

The triangle inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

 $||\mathbf{u}+\mathbf{v}|| \leq ||\mathbf{u}|| + ||\mathbf{v}||$

Proof.

$$||\mathbf{u} + \mathbf{v}||^{2} = (u_{1} + v_{1})^{2} + \dots + (u_{n} + v_{n})^{2}$$

= $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$
= $\mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$
 $\leq ||\mathbf{u}||^{2} + 2||\mathbf{u} \cdot \mathbf{v}| + ||\mathbf{v}||^{2}$
 $\leq ||\mathbf{u}||^{2} + 2||\mathbf{u}|| ||\mathbf{v}|| + ||\mathbf{v}||^{2}$
= $(||\mathbf{u}|| + ||\mathbf{v}||)^{2}$

イロン イロン イヨン イヨン

Distance

(CONAHCYT INAC	

≣ ▶ ◀ ≣ ▶ ≣ ∽ Q ↔ July 9 2024 39 / 56

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Distanc

Distance

July 9 2024 40 / 56

2

Distanc

Distance

э.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Distance

Definition

The **distance** $d(\mathbf{u}, \mathbf{v})$ between vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is defined by

 $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$

	NAOE)

Distance

Definition

The **distance** $d(\mathbf{u}, \mathbf{v})$ between vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is defined by

 $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$

	INAOE)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Distanc

Example

Find the distance between
$$\mathbf{u} = \begin{bmatrix} \sqrt{2} \\ 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix}$

◆□ > ◆圖 > ◆臣 > ◆臣 > □ 臣

Distanc

Example

Find the distance between
$$\mathbf{u} = \begin{bmatrix} \sqrt{2} \\ 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix}$
 $\mathbf{u} - \mathbf{v} = \begin{bmatrix} \sqrt{2} \\ -1 \\ 1 \end{bmatrix}$
So,
 $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(\sqrt{2})^2 + (-1)^2 + 1^2} = \sqrt{4} = 2$

July 9 2024 4

э.

イロト イヨト イヨト イヨト

42 / 56

(COI		

July 9 2024 43 / 56

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

The dot product can also be used to calculate the angle between a pair of vectors. In \mathbb{R}^2 or \mathbb{R}^3 , the angle between the nonzero vector **u** and **v** will refer to the angle θ determined by these vectors that satisfies $0 \le \theta \le 180$.

	INAOE)

July 9 2024	44 / 56

э

イロト イヨト イヨト

Consider the triangle with sides \mathbf{u} , \mathbf{v} , and $\mathbf{u} - \mathbf{v}$, where θ is the angle between \mathbf{u} and \mathbf{v} . Applying the law of cosines to this triangle yields

$$||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$

	Γ ΙΝΑΟΕ)

< □ > < □ > < □ > < □ > < □ >

After simplification, we get

 $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta$

JAHCYT	

2

After simplification, we get

 $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta$

Definition

For nonzero vectors **u** and **v** in \mathbb{R}^n ,

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||}$$

	JAOE)

After simplification, we get

 $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta$

Definition

For nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n ,

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||}$$

By Cauchy-Schwarz $\left|\frac{\mathbf{u}\cdot\mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||}\right| \leq 1$. So, $\frac{\mathbf{u}\cdot\mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||}$ take values between -1 and 1.

We now generalize the idea of perpendicularity to vectors in \mathbb{R}^n , where it is called **orthogonality**.

In \mathbb{R}^2 or \mathbb{R}^3 , two nonzero vectors **u** and **v** are **perpendicular** if the angle θ between them is a right angle - that is, if $\theta = \pi/2$ radians, or 90.

イロト イヨト イヨト

Orthogonal vectors

Thus,

$$\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||} = \cos 90 = 0$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Orthogonal vectors

Thus,

$$\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||} = \cos 90 = 0$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Definition

Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

ICON	IAHCYI	INAOE)

< □ > < □ > < □ > < □ > < □ >

Orthogonal vectors

Thus,

$$\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||} = \cos 90 = 0$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Definition

Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

Since $\mathbf{0} \cdot \mathbf{v}$ for every vector in \mathbb{R}^n , the zero vector is orthogonal to every vector.

(日) (四) (日) (日) (日)

Orthogonal vectors

Thus,

$$\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||} = \cos 90 = 0$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Definition

Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

Since $\mathbf{0} \cdot \mathbf{v}$ for every vector in \mathbb{R}^n , the zero vector is orthogonal to every vector.

Is the zero vector orthogonal to itself?

(日) (四) (日) (日) (日)

Orthogonal vectors

Theorem

Pythagora's theorem. For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

if and only if \mathbf{u} and \mathbf{v} are orthogonal.

	NAOE)

Projections

(CONAHCYT INAC	

æ

・ロト ・四ト ・ヨト ・ヨト

Projections

Consider two nonzero vectors **u** and **v**. Let **p** be the vector obtained by dropping a perpendicular from the head of **v** onto **u** and let θ be the angle between **u** and **v**.

Projections

Definition

If u and v are vectors in \mathbb{R}^n and $\mathbf{u} \neq \mathbf{0}$, the projection of v onto u is the vector $proj_{\mathbf{u}(\mathbf{v})}$ defined by

$$proj_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u}\cdot\mathbf{v}}{\mathbf{u}\cdot\mathbf{u}}\right)\mathbf{u}$$

(You can prove it for \mathbb{R}^2)

2

Ending

	T INAOE

July 9 2024 53 / 56

æ

・ロト ・四ト ・ヨト ・ヨト

Ending

Homework

- You have three vectors **u**, **v**, and **w** such that $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$. Is always $\mathbf{v} = \mathbf{w}$?
- Prove that $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$ (slide 46).
- Prove the Pythagora's theorem for vectors in \mathbb{R}^n (slide 49).
- Prove the definition of projection over \mathbb{R}^2 (slide 52).
- $||proj_{\mathbf{u}}(\mathbf{v})|| \leq ||\mathbf{v}||$ in \mathbb{R}^2 and \mathbb{R}^3 (Can you see why?).
 - Show that this inequality is true in \mathbb{R}^n .
 - Show that this inequality is equivalent to the Cauchy-Schwarz inequality.

(日) (四) (日) (日) (日)

Endin

Next topics

Matrices

CON	LALIZ	CYT I	INIAO	
COP			INAC	'с)

July 9 2024 55 / 56

э.

Thank you

2

▲□▶ ▲圖▶ ▲国▶ ▲国▶