

Jesús García Díaz

CONAHCYT INAOE

July 9 2024

NAHC'	

2

1/33

Contents

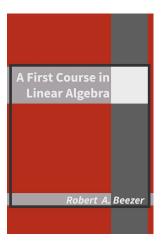
Linear combinations

3 Linear dependence

(CONAHCYT INA	

2

Bibliography





イロト イヨト イヨト イヨト

http://linear.ups.edu/

NAH		

2

100		AT INC	
ICOI	VAHC'	Y I IIN/	AUE

・ロト ・四ト ・ヨト ・ヨト

Is
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 1\\0\\3 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\-3 \end{bmatrix}$?

э.

Is
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 1\\0\\3 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\-3 \end{bmatrix}$?

In other words, are there x and y scalars such that $x \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$?

< □ > < □ > < □ > < □ > < □ >

Is
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 1\\0\\3 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\-3 \end{bmatrix}$?

In other words, are there x and y scalars such that $x \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$?

$$\begin{array}{c} x - y = 1 \\ y = 2 \\ 3x - 3y = 3 \end{array} \qquad \qquad \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 3 & -3 & 3 \end{bmatrix} \xrightarrow{input} \boxed{GJ} \xrightarrow{output} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ >

Is
$$\begin{bmatrix} 2\\3\\4 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 1\\0\\3 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\-3 \end{bmatrix}$?

э.

Is
$$\begin{bmatrix} 2\\3\\4 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 1\\0\\3 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\-3 \end{bmatrix}$?

In other words, are there x and y scalars such that $x \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$?

< □ > < □ > < □ > < □ > < □ >

Is
$$\begin{bmatrix} 2\\3\\4 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 1\\0\\3 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\-3 \end{bmatrix}$?

In other words, are there x and y scalars such that $x \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$?

$$\begin{array}{c} x - y = 2 \\ y = 3 \\ 3x - 3y = 4 \end{array} \qquad \qquad \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 3 \\ 3 & -3 & 4 \end{bmatrix} \xrightarrow{input} \boxed{GJ} \xrightarrow{output} \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & -2 \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ >

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

"Proof"

$$\begin{aligned} x - y &= 1\\ x + y &= 3 \end{aligned}$$

(CONA	

イロン イロン イヨン イヨン

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

"Proof"

$$x \begin{bmatrix} 1\\1 \end{bmatrix} + y \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\3 \end{bmatrix}$$
$$x + y = 3$$

2

イロン イロン イヨン イヨン

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

"Proof"

$$x = y = 1$$

$$x = y = 3$$

$$x \begin{bmatrix} 1\\1 \end{bmatrix} + y \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\3 \end{bmatrix}$$

$$2 \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\3 \end{bmatrix}$$

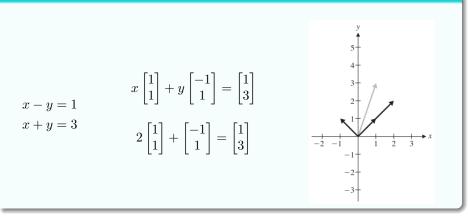
2

7/33

< □ > < □ > < □ > < □ > < □ >

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

"Proof"



2

7/33

• • • • • • • • • •

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

"Proof"

$$\begin{aligned} x - y &= 2\\ 2x - 2y &= 4 \end{aligned}$$

< □ > < □ > < □ > < □ > < □ >

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

"Proof"

$$x \begin{bmatrix} 1\\ 2 \end{bmatrix} + y \begin{bmatrix} -1\\ -2 \end{bmatrix} = \begin{bmatrix} 2\\ 4 \end{bmatrix}$$
$$2x - 2y = 4$$

2

イロン イロン イヨン イヨン

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

"Proof"

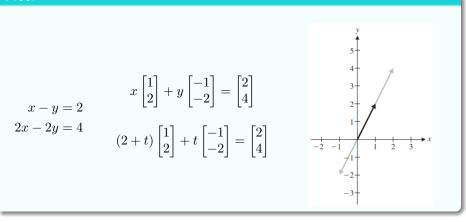
$$x \begin{bmatrix} 1\\ 2 \end{bmatrix} + y \begin{bmatrix} -1\\ -2 \end{bmatrix} = \begin{bmatrix} 2\\ 4 \end{bmatrix}$$
$$2x - 2y = 4$$
$$(2+t) \begin{bmatrix} 1\\ 2 \end{bmatrix} + t \begin{bmatrix} -1\\ -2 \end{bmatrix} = \begin{bmatrix} 2\\ 4 \end{bmatrix}$$

2

イロン イロン イヨン イヨン

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

"Proof"



• • • • • • • • • •

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

"Proof"

$$\begin{aligned} x - y &= 1\\ x - y &= 3 \end{aligned}$$

	NAOE)

イロン イロン イヨン イヨン

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

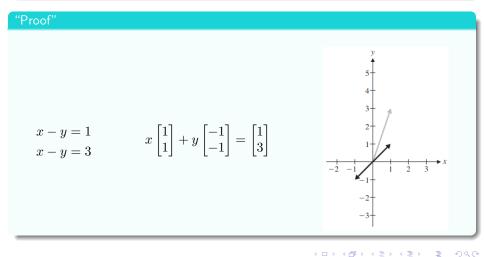
"Proof"

$$\begin{array}{l} x - y = 1 \\ x - y = 3 \end{array} \qquad x \begin{bmatrix} 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

2

< □ > < □ > < □ > < □ > < □ >

A system of linear equations $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.



Spanning set

I COP	IAHCYT	INAUE

・ロト ・四ト ・ヨト ・ヨト

Spanning set

Definition

If $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is a set of vectors in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ is called the **span** of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ and is denoted by $\langle \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\} \rangle$ or $\langle S \rangle$. If $\langle S \rangle = \mathbb{R}^n$, then S is called a **spanning set** for \mathbb{R}^n .

Show that
$$\mathbb{R}^2 = \langle \{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \} \rangle$$

Show that
$$\mathbb{R}^2 = \langle \{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \}
angle$$

We need to show that an arbitrary vector
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
 can be written as a linear combination of $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$; that is, we must show that the equation $x \begin{bmatrix} 2 \\ -1 \end{bmatrix} + y \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$

can always be solved for x and y (in terms of a and b), regardless of the values of a and b.

2

$$\begin{bmatrix} 2 & 1 & a \\ -1 & 3 & b \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -1 & 3 & b \\ 2 & 1 & a \end{bmatrix} \xrightarrow{2R_1 + R_2} \begin{bmatrix} -1 & 3 & b \\ 0 & 7 & a + 2b \end{bmatrix}$$

◆□ > ◆圖 > ◆臣 > ◆臣 > ○臣

$$\begin{bmatrix} 2 & 1 & a \\ -1 & 3 & b \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -1 & 3 & b \\ 2 & 1 & a \end{bmatrix} \xrightarrow{2R_1 + R_2} \begin{bmatrix} -1 & 3 & b \\ 0 & 7 & a + 2b \end{bmatrix}$$
$$\xrightarrow{\frac{1}{7}R_2} \begin{bmatrix} -1 & 3 & b \\ 0 & 1 & (a+2b)/7 \end{bmatrix} \xrightarrow{-3R_2 + R_1} \begin{bmatrix} -1 & 0 & (b-3a)/7 \\ 0 & 1 & (a+2b)/7 \end{bmatrix}$$

2

Spanning se

Example

$$\begin{bmatrix} 2 & 1 & a \\ -1 & 3 & b \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -1 & 3 & b \\ 2 & 1 & a \end{bmatrix} \xrightarrow{2R_1 + R_2} \begin{bmatrix} -1 & 3 & b \\ 0 & 7 & a + 2b \end{bmatrix}$$
$$\xrightarrow{\frac{1}{7}R_2} \begin{bmatrix} -1 & 3 & b \\ 0 & 1 & (a+2b)/7 \end{bmatrix} \xrightarrow{-3R_2 + R_1} \begin{bmatrix} -1 & 0 & (b-3a)/7 \\ 0 & 1 & (a+2b)/7 \end{bmatrix}$$

From which we see that x = (3a - b)/7 and y = (a + 2b)/7. Thus, for any choice of a and b, we have

$$\left(\frac{3a-b}{7}\right) \begin{bmatrix} 2\\-1 \end{bmatrix} + \left(\frac{a+2b}{7}\right) \begin{bmatrix} 1\\3 \end{bmatrix} = \begin{bmatrix} a\\b \end{bmatrix}$$

2

$$\begin{bmatrix} 2 & 1 & a \\ -1 & 3 & b \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -1 & 3 & b \\ 2 & 1 & a \end{bmatrix} \xrightarrow{2R_1 + R_2} \begin{bmatrix} -1 & 3 & b \\ 0 & 7 & a + 2b \end{bmatrix}$$
$$\xrightarrow{\frac{1}{7}R_2} \begin{bmatrix} -1 & 3 & b \\ 0 & 1 & (a+2b)/7 \end{bmatrix} \xrightarrow{-3R_2 + R_1} \begin{bmatrix} -1 & 0 & (b-3a)/7 \\ 0 & 1 & (a+2b)/7 \end{bmatrix}$$

From which we see that x = (3a - b)/7 and y = (a + 2b)/7. Thus, for any choice of a and b, we have

$$\left(\frac{3a-b}{7}\right) \begin{bmatrix} 2\\-1 \end{bmatrix} + \left(\frac{a+2b}{7}\right) \begin{bmatrix} 1\\3 \end{bmatrix} = \begin{bmatrix} a\\b \end{bmatrix}$$

 $\mathsf{Is}\; \mathbb{R}^2 = \langle \{ \begin{bmatrix} 2\\ -1 \end{bmatrix}, \begin{bmatrix} 1\\ 3 \end{bmatrix}, \begin{bmatrix} 5\\ 7 \end{bmatrix} \} \rangle ?$

æ

100		AT INC	
ICOI	VAHC'	Y I IIN/	AUE

2

Definition

A set of vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ is **linearly dependent** if there are scalars $c_1, c_2, ..., c_k$, at least one of which is not zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0}$$

A set of vectors that is not linearly dependent is called **linearly independent**.

Definition

A set of vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ is **linearly dependent** if there are scalars $c_1, c_2, ..., c_k$, at least one of which is not zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0}$$

A set of vectors that is not linearly dependent is called **linearly independent**.

Are
$$\begin{bmatrix} 2 \\ 6 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, and $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ linearly dependent?

Definition

A set of vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ is **linearly dependent** if there are scalars $c_1, c_2, ..., c_k$, at least one of which is not zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0}$$

A set of vectors that is not linearly dependent is called linearly independent.

Are
$$\begin{bmatrix} 2\\ 6 \end{bmatrix}$$
, $\begin{bmatrix} 1\\ 3 \end{bmatrix}$, and $\begin{bmatrix} 4\\ 1 \end{bmatrix}$ linearly dependent?
 $\begin{bmatrix} 2\\ 6 \end{bmatrix} - 2\begin{bmatrix} 1\\ 3 \end{bmatrix} + 0\begin{bmatrix} 4\\ 1 \end{bmatrix} =$

Linear dependence

Theorem

Vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ in \mathbb{R}^n are linearly dependent if and only at least one of the vectors can be expressed as a linear combination of the others.

Linear dependence

Theorem

Vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ in \mathbb{R}^n are linearly dependent if and only at least one of the vectors can be expressed as a linear combination of the others.

"Proof"

It is almost obvious by "moving" some linearly dependent vector to the right.

Are
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 and $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ linearly dependent?

Are
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 and $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ linearly dependent?

Is any of them a multiple of the other?

CO	NIA LI	CYT		OE)
CO	ин		TIN/A	UE)

2

イロン 不通 とうきとう ほどう

Are
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 and $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ linearly dependent?

Is any of them a multiple of the other?

No. So, they are linearly independent.

Are
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ linearly dependent?

Are
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ linearly dependent?

Are there scalars c_1, c_2, c_3 , different from zero, such that

$$c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} ?$$

2

Are
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ linearly dependent?

Are there scalars c_1, c_2, c_3 , different from zero, such that

$$c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} ?$$

$$\begin{array}{c} c_1 + c_3 = 0 \\ c_1 + c_2 = 0 \\ c_2 + c_3 = 0 \end{array} \qquad \left[\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array} \right] \xrightarrow{input} \left[\begin{array}{c} GJ \\ GJ \end{array} \xrightarrow{output} \left[\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

イロト イヨト イヨト イヨト

2

Are
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ linearly dependent?

Are there scalars c_1, c_2, c_3 , different from zero, such that

$$c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} ?$$

$$\begin{array}{c} c_1 + c_3 = 0 \\ c_1 + c_2 = 0 \\ c_2 + c_3 = 0 \end{array} \qquad \left[\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array} \right] \xrightarrow{input} \left[\begin{array}{c} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right] \xrightarrow{output} \left[\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

Thus, $c_1 = 0, c_2 = 0$, and $c_3 = 0$. The vectors are linearly independent.

2

18/33

イロン イ団 とく ヨン イヨン

Are
$$\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\-1 \end{bmatrix}$, and $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ linearly dependent?

2

Are
$$\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\-1 \end{bmatrix}$, and $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ linearly dependent?

Are there scalars c_1, c_2, c_3 , different from zero, such that

$$c_1 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\-1 \end{bmatrix} + c_3 \begin{bmatrix} -1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} ?$$

2

Are
$$\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\-1 \end{bmatrix}$, and $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ linearly dependent?

Are there scalars c_1, c_2, c_3 , different from zero, such that

$$c_1 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\-1 \end{bmatrix} + c_3 \begin{bmatrix} -1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} ?$$

Yes,

$$\begin{bmatrix} 1\\-1\\0 \end{bmatrix} + \begin{bmatrix} 0\\1\\-1 \end{bmatrix} + \begin{bmatrix} -1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

2

19/33

Are
$$\begin{bmatrix} 1\\2\\0 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, and $\begin{bmatrix} 1\\4\\2 \end{bmatrix}$ linearly dependent?

Are
$$\begin{bmatrix} 1\\2\\0 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, and $\begin{bmatrix} 1\\4\\2 \end{bmatrix}$ linearly dependent?

Are there scalars c_1, c_2, c_3 , different from zero, such that

$$c_1 \begin{bmatrix} 1\\2\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\1\\-1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\4\\2 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} ?$$

2

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Are
$$\begin{bmatrix} 1\\2\\0 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, and $\begin{bmatrix} 1\\4\\2 \end{bmatrix}$ linearly dependent?

Are there scalars c_1, c_2, c_3 , different from zero, such that

$$c_1 \begin{bmatrix} 1\\2\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\1\\-1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\4\\2 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} ?$$

$$\begin{array}{c} c_1 + c_2 + c_3 = 0 \\ 2c_1 + c_2 + 4c_3 = 0 \\ -c_2 + 2c_3 = 0 \end{array} \qquad \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 4 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix} \xrightarrow{input} \begin{bmatrix} GJ \\ output \\ O \end{bmatrix} \xrightarrow{output} \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

2

20/33

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Are
$$\begin{bmatrix} 1\\2\\0 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, and $\begin{bmatrix} 1\\4\\2 \end{bmatrix}$ linearly dependent?

Are there scalars c_1, c_2, c_3 , different from zero, such that

$$c_1 \begin{bmatrix} 1\\2\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\1\\-1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\4\\2 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} ?$$

$$\begin{array}{c} c_1 + c_2 + c_3 = 0 \\ 2c_1 + c_2 + 4c_3 = 0 \\ -c_2 + 2c_3 = 0 \end{array} \qquad \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 4 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix} \xrightarrow{input} \begin{bmatrix} GJ \\ output \\ O \end{bmatrix} \xrightarrow{output} \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus, $c_1 = -3c_3, c_2 = 2c_3$, and c_3 is a free variable. Therefore, The vectors are linearly dependent.

æ

20/33

イロン イ団 とく ヨン イヨン

Linear dependence

Theorem

Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ be (column) vectors in \mathbb{R}^n and let A be the $n \times m$ matrix $[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_m]$ with these vectors as its columns. Then $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ are linearly dependent if and only if $\mathcal{LS}(A, \mathbf{0})$ has a nontrivial solution.

Linear dependence

Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ be (column) vectors in \mathbb{R}^n and let A be the $n \times m$ matrix $[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_m]$ with these vectors as its columns. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ are linearly dependent if and only if $\mathcal{LS}(A, \mathbf{0})$ has a nontrivial solution.

Proof.

Vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ are linearly dependent if and only if there are scalars $c_1, c_2, ..., c_m$ (not all them zero, ... The previous paragraph is equivalent to saying that the nonzero vector $\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix}$ is a c_1, c_2, \dots, c_m (not all them zero) such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_m\mathbf{v}_m = \mathbf{0}$.

solution of $\mathcal{LS}(A, \mathbf{0})$.

	•	미 🛛 🖉 🕨 🤇 토 🗸 토 🕨	1
(CONAHCYT INAOE)	Linear algebra	July 9 2024	21 / 33

The standard unit (column) vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are linearly independent in \mathbb{R}^3 because $[\mathbf{e}_1 \ \mathbf{e}_2 \ \mathbf{e}_3 | \mathbf{0}]$ is already in reduced row-echelon form

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

э

The standard unit (column) vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are linearly independent in \mathbb{R}^3 because $[\mathbf{e}_1 \ \mathbf{e}_2 \ \mathbf{e}_3 | \mathbf{0}]$ is already in reduced row-echelon form

[1	0	0	0
0	1	0	0
$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0	1	$\begin{bmatrix} 0\\0\\0\end{bmatrix}$

It only has the trivial solution. In general, we can see that $\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n$ are linearly independent in \mathbb{R}^n

Example (rows)

Row-reduce a matrix with the following row vectors

```
[1,2,0] \quad [1,1,-1] \quad [1,4,2] \\
```

Example (rows)

Row-reduce a matrix with the following row vectors

$$[1,2,0]$$
 $[1,1,-1]$ $[1,4,2]$

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & -1 \\ 1 & 4 & 2 \end{bmatrix} \xrightarrow{R'_2 = -R_1 + R_2} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ 1 & 4 & 2 \end{bmatrix} \xrightarrow{R'_3 = -R_1 + R_3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix}$$
$$\xrightarrow{R''_3 = 2R'_2 + R'_3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

2

Example (rows)

Row-reduce a matrix with the following row vectors

$$[1,2,0]$$
 $[1,1,-1]$ $[1,4,2]$

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & -1 \\ 1 & 4 & 2 \end{bmatrix} \xrightarrow{R'_2 = -R_1 + R_2} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ 1 & 4 & 2 \end{bmatrix} \xrightarrow{R'_3 = -R_1 + R_3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix}$$
$$\xrightarrow{R''_3 = 2R'_2 + R'_3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore,

$$\mathbf{0} = R_3'' = 2R_2' + R_3' = 2(-R_1 + R_2) + (-R_1 + R_3) = -3R_1 + 2R_2 + R_3$$

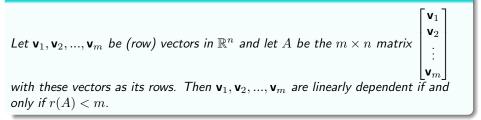
Namely,

$$\mathbf{0} = -3[1,2,0] + 2[1,1,-1] + [1,4,2]$$

2

Linear dependence

Theorem



(日) (四) (日) (日) (日)

Linear dependence

Theorem

Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ be (row) vectors in \mathbb{R}^n and let A be the $m \times n$ matrix $\begin{bmatrix} \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{bmatrix}$ with these vectors as its rows. Then $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ are linearly dependent if and only if r(A) < m.

"Proof"

Just generalize the previous example.

r C.ON	AHCY	I INA	AOFI

(日) (四) (日) (日) (日)

 \mathbf{v}_1

Naming the r number

Definition

The ${\bf rank}$ of a matrix A, denoted by r(A) is the number of nonzero rows in its row-echelon form.

Naming the r number

Theorem

Let A be the coefficient matrix of a system of linear equations with n variables. If the system is consistent, then

number of free variables = n - r(A)

	T INAOE

æ July 9 2024 27/33

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

• Vectors can be the result of linear combinations of other vectors.

- Vectors can be the result of linear combinations of other vectors.
- A system $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if **b** is a **linear combination** of the column vectors of A.

< □ > < □ > < □ > < □ > < □ >

Summary

- Vectors can be the result of linear combinations of other vectors.
- A system $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if **b** is a **linear combination** of the column vectors of A.
- The span of a set S of vectors, $\langle \{S\}\rangle,$ is the set of all their linear combinations.

Summary

- Vectors can be the result of linear combinations of other vectors.
- A system $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if **b** is a **linear combination** of the column vectors of A.
- The span of a set S of vectors, $\langle \{S\}\rangle,$ is the set of all their linear combinations.
- A set of vectors is **linearly independent** if none of them is a linear combination of the others. In other words, all vectors are "necessary" or "important" (for the span).

• The column vectors of a matrix A are linearly dependent if and only if $\mathcal{LS}(A, \mathbf{0})$ has a nontrivial solution.

2

メロト メタト メヨト メヨト

- The column vectors of a matrix A are linearly dependent if and only if $\mathcal{LS}(A, \mathbf{0})$ has a nontrivial solution.
- The column vectors of a matrix A are linearly dependent if and only if $\mathcal{N}(A)$ has a nonzero vector.

(日) (四) (日) (日) (日)

- The column vectors of a matrix A are linearly dependent if and only if $\mathcal{LS}(A, \mathbf{0})$ has a nontrivial solution.
- The column vectors of a matrix A are linearly dependent if and only if $\mathcal{N}(A)$ has a nonzero vector.
- The row vectors of an $m \times n$ matrix A are linearly dependent if and only if r(A) < m.

(日) (四) (日) (日) (日)

Endin

Homework

Determine if vector ${\boldsymbol v}$ is a linear combination of the other vectors.

$$\mathbf{v} = \begin{bmatrix} 1\\2 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1\\-1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 2\\-1 \end{bmatrix}$$
$$\mathbf{v} = \begin{bmatrix} 3\\2\\-1 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$
$$\mathbf{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$

2

30/33

Homework

Find the span of the following vectors (a) geometrically and (b) algebraically

$$\langle \left\{ \begin{bmatrix} 2\\-4 \end{bmatrix}, \begin{bmatrix} -1\\2 \end{bmatrix} \right\} \rangle \qquad \qquad \langle \left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \right\} \rangle$$

$$\langle \{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\-1 \end{bmatrix} \} \rangle \qquad \qquad \langle \{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \} \rangle$$

2

Endin

Next topics

Matrices

CON	LALIZ	CYT I	INLAC	
COP			INAC	'с)

July 9 2024 32 / 33

э.

Thank you

2

▲□▶ ▲圖▶ ▲国▶ ▲国▶