Linear algebra Matrices - 1 of 2

Jesús García Díaz

CONAHCYT INAOE

July 9 2024

100		
	V I IIN	

2

1/47

メロト メロト メヨト メヨト

Contents

Matrix operations

- 2 Matrix addition and scalar multiplication
 - 3 Partitioned matrices
 - 4 Matrix powers
- 5 The transpose of a matrix

Bibliography

イロト イヨト イヨト イヨト

http://linear.ups.edu/

IALLCN/T	
ансті	INAUE)

2

2

Definition

A **matrix** is a rectangular array of numbers called the **entries**, or **elements**, of the matrix.

CO	U A LI	CVT	INDA	OE)
COI	чжп		IIN/P	UE,

メロト メタト メヨト メヨト

Definition

A **matrix** is a rectangular array of numbers called the **entries**, or **elements**, of the matrix.

The **size** of a matrix is a description of the numbers of rows and columns it has. A matrix is called $m \times n$ if it has m rows and n columns.

< □ > < □ > < □ > < □ > < □ >

Definition

A **matrix** is a rectangular array of numbers called the **entries**, or **elements**, of the matrix.

The **size** of a matrix is a description of the numbers of rows and columns it has. A matrix is called $m \times n$ if it has m rows and n columns.

A $1 \times m$ matrix is called a row matrix (or row vector), and an $n \times 1$ matrix is called a column matrix (or column vector).

イロト イヨト イヨト

We use double-subscript notation to refer to the entries of a matrix A. The entry of A in row i and column j is denoted by a_{ij} .

With this notation, a general $m \times n$ matrix A has the form

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

If the columns of A are the vectors \mathbf{a}_1 , \mathbf{a}_2 ,..., \mathbf{a}_n , then we may represent A as

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$$

If the columns of A are the vectors \mathbf{a}_1 , \mathbf{a}_2 ,..., \mathbf{a}_n , then we may represent A as

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$$

If the rows of A are A_1 , A_2 ,..., A_m , then we may represent A as

$$A = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$

(CONV	
$I \cup O \cup A$	INAGE
(

э

< □ > < □ > < □ > < □ > < □ >

The diagonal entries of A are $a_{11}, a_{22}, a_{33}, \dots$, and if m = n, then A is called a square matrix.

A square matrix whose nondiagonal entries are all zero is called a **diagonal matrix**.

A diagonal matrix all of whose diagonal entries are the same is called a **scalar matrix**. If the scalar on the diagonal is 1, the scalar matrix is called an **identity matrix**.

э

Two matrices are **equal** if they have the same size and if their corresponding entries are equal.

Thus, if $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{r \times s}$, then A = B if and only if m = r and n = s and $a_{ij} = b_{ij}$ for all i and j.

< □ > < □ > < □ > < □ > < □ >

2

メロト メタト メヨト メヨト

If $A = [a_{ij}]$ and $B = [b_{ij}]$ are $m \times n$ matrices, their sum A + B is the $m \times n$ matrix obtained by adding the corresponding entries. Thus,

$$A + B = [a_{ij} + b_{ij}]$$

If A and B are not the same size, then A + B is not defined.

(日) (四) (日) (日) (日)

If A is an $m \times n$ matrix and c is a scalar, the **scalar multiple** cA is the $m \times n$ matrix obtained by multiplying each entry of A by c. More formally, we have

$$cA = c[a_{ij}] = [ca_{ij}]$$

• • • • • • • • • • • •

If A is an $m \times n$ matrix and c is a scalar, the **scalar multiple** cA is the $m \times n$ matrix obtained by multiplying each entry of A by c. More formally, we have

$$cA = c[a_{ij}] = [ca_{ij}]$$

The matrix (-1)A is written as -A and called the **negative** of A. We can use this fact to define the **difference** of two matrices: If A and B are the same size, then

$$A - B = A + (-B)$$

(日) (四) (日) (日) (日)

A matrix all of whose entries are zero is called a **zero matrix** and denoted by O or $O_{m\times n}.$

If A is any matrix and ${\cal O}$ is the zero matrix of the same size, then

$$A + O = A = O + A$$

and

$$A - A = O = -A + A$$

(日) (四) (日) (日) (日)

Definition

If A is an $m \times n$ matrix and B is an $n \times r$ matrix, then the **product** C = AB is an $m \times r$ matrix. The (i, j) entry of the product is computed as follows:

 $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{1n}$

Definition

If A is an $m \times n$ matrix and B is an $n \times r$ matrix, then the **product** C = AB is an $m \times r$ matrix. The (i, j) entry of the product is computed as follows:

 $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{1n}$

Notice that A and B need not be the same size. However, the number of columns of A must be the same as the number of rows of B.

$$A \qquad B = AB$$
$$m \times n \quad n \times r \qquad m \times r$$
$$\uparrow \uparrow \uparrow \\ Same$$
Size of AB

ман	(Y)	

Notice that, in the expression $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{1n}$ the "outer subscripts" on each ab terms are always i and j whereas the "inner subscripts" always agree and increase from 1 to n. We see this pattern clearly if we write c_{ij} using summation notation:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Every linear system can be written in the form $A\mathbf{x} = \mathbf{b}$. In fact, the notation $[A|\mathbf{b}]$ for the augmented matrix of a linear system is just shorthand for the matrix equation $A\mathbf{x} = \mathbf{b}$.

$$\begin{bmatrix} 3 & -2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$3x_1 - 2x_2 = 2 x_1 + 2x_2 = 2$$

Every linear system can be written in the form $A\mathbf{x} = \mathbf{b}$. In fact, the notation $[A|\mathbf{b}]$ for the augmented matrix of a linear system is just shorthand for the matrix equation $A\mathbf{x} = \mathbf{b}$.

$$3x_1 - 2x_2 = 2$$

$$x_1 + 2x_2 = 2$$

$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 3x_1 - 2x_2 \\ x_1 + 2x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

э

16/47

イロト イ団ト イヨト イヨト

 $\begin{bmatrix} 3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$

Every linear system can be written in the form $A\mathbf{x} = \mathbf{b}$. In fact, the notation $[A|\mathbf{b}]$ for the augmented matrix of a linear system is just shorthand for the matrix equation $A\mathbf{x} = \mathbf{b}$.

$$\begin{bmatrix} 3 & -2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
$$3x_1 - 2x_2 = 2$$
$$\begin{bmatrix} 3x_1 - 2x_2 \\ x_1 + 2x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Notice that matrix multiplication consists of dot products between rows and columns.

(CONAHCYT INAOE)	Linear algebra		July 9 2024		16 / 47
	•		문제 제품 제	-	w) Q (w

Theorem

Let A be an $m \times n$ matrix, \mathbf{e}_i a $1 \times m$ standard unit vector, and \mathbf{e}_j a $n \times 1$ standard unit vector. Then

(a) $\mathbf{e}_i A$ is the *i*-th row of A and (b) $A\mathbf{e}_j$ is the *j*-th column of A.

Theorem

Let A be an $m \times n$ matrix, \mathbf{e}_i a $1 \times m$ standard unit vector, and \mathbf{e}_j a $n \times 1$ standard unit vector. Then

(a) $\mathbf{e}_i A$ is the *i*-th row of A and (b) $A\mathbf{e}_j$ is the *j*-th column of A.

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 7 & 8 & 9 & 1 \\ 4 & 5 & 6 & 1 \end{bmatrix}$$

2

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 7 & 8 & 9 & 1 \\ 4 & 5 & 6 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 14 & 16 & 18 & 2 \end{bmatrix}$$

2

18/47

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 7 & 8 & 9 & 1 \\ 4 & 5 & 6 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 14 & 16 & 18 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 14 & 16 & 18 & 2 \end{bmatrix}$$

(CONAHCYT INAOE)

イロト イヨト イヨト イヨト

18/47

2

(00)			00
I C.O.N	ΙΑΗΟΥ	1 INA	OF:
· · · ·			

It will often be convenient to regard a matrix as being composed of a number of smaller **submatrices**. By introducing vertical and horizontal lines into a matrix, we can **partition** it into **blocks**.

Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 7 & 2 \end{bmatrix}$$

20 / 47

(日) (四) (日) (日) (日)

It will often be convenient to regard a matrix as being composed of a number of smaller **submatrices**. By introducing vertical and horizontal lines into a matrix, we can **partition** it into **blocks**.

Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 & 0 \\ \hline 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 7 & 2 \end{bmatrix}$$

20/47

(日) (四) (日) (日) (日)

It will often be convenient to regard a matrix as being composed of a number of smaller **submatrices**. By introducing vertical and horizontal lines into a matrix, we can **partition** it into **blocks**.

Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 & 0 \\ \hline 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 7 & 2 \end{bmatrix} = \begin{bmatrix} I & B \\ O & C \end{bmatrix}$$

20 / 47

When matrices are being multiplied, there is often an advantage to be gained by viewing them as partitioned matrices.

Suppose A is $m \times n$ and B is $n \times r$, so the product AB exists. If we partition B in terms of its column vectors, as $B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_r \end{bmatrix}$, then

When matrices are being multiplied, there is often an advantage to be gained by viewing them as partitioned matrices.

Suppose A is $m \times n$ and B is $n \times r$, so the product AB exists. If we partition B in terms of its column vectors, as $B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_r \end{bmatrix}$, then

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_r \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_r \end{bmatrix}$$

When matrices are being multiplied, there is often an advantage to be gained by viewing them as partitioned matrices.

Suppose A is $m \times n$ and B is $n \times r$, so the product AB exists. If we partition B in terms of its column vectors, as $B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_r \end{bmatrix}$, then

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_r \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_r \end{bmatrix}$$

This result is an immediate consequence of the definition of matrix multiplication. The form on the right is called the **matrix-column representation** of the product.

イロト 不得 トイヨト イヨト

Suppose A is $m\times n$ and B is $n\times r,$ so the product AB exists. If we partition A in terms of its row vectors, as

$$A = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$

Then

ман	(Y)	

July 9 2024	22 / 4
-------------	--------
Suppose A is $m\times n$ and B is $n\times r,$ so the product AB exists. If we partition A in terms of its row vectors, as

$$A = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$

Then

$$AB = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} B = \begin{bmatrix} \mathbf{A}_1B \\ \mathbf{A}_2B \\ \vdots \\ \mathbf{A}_mB \end{bmatrix}$$

э

Suppose A is $m \times n$ and B is $n \times r$, so the product AB exists. If we partition A in terms of its row vectors, as

$$A = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$

Then

$$AB = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} B = \begin{bmatrix} \mathbf{A}_1B \\ \mathbf{A}_2B \\ \vdots \\ \mathbf{A}_mB \end{bmatrix}$$

Once again, this result is a direct consequence of the definition of matrix multiplication. The form on the right is called the **row-matrix representation** of the product.

イロト イヨト イヨト

The definition of the matrix product AB uses the natural partition of A into rows and B into columns; this form might be called the **row-column representation** of the product.

The definition of the matrix product AB uses the natural partition of A into rows and B into columns; this form might be called the **row-column representation** of the product.

$$AB = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_r \end{bmatrix}$$

The definition of the matrix product AB uses the natural partition of A into rows and B into columns; this form might be called the **row-column representation** of the product.

$$AB = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_r \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \mathbf{b}_1 & \mathbf{A}_1 \mathbf{b}_2 & \cdots & \mathbf{A}_1 \mathbf{b}_r \\ \mathbf{A}_2 \mathbf{b}_1 & \mathbf{A}_2 \mathbf{b}_2 & \cdots & \mathbf{A}_2 \mathbf{b}_r \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}_m \mathbf{b}_1 & \mathbf{A}_m \mathbf{b}_2 & \cdots & \mathbf{A}_m \mathbf{b}_r \end{bmatrix}$$

We can also partition A into columns and B into rows; this form is called the **column-row representation** of the product.

э

We can also partition A into columns and B into rows; this form is called the **column-row representation** of the product.

$$AB = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \vdots \\ \mathbf{B}_n \end{bmatrix}$$

э

We can also partition A into columns and B into rows; this form is called the **column-row representation** of the product.

$$AB = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \vdots \\ \mathbf{B}_n \end{bmatrix} = \mathbf{a}_1 \mathbf{B}_1 + \mathbf{a}_2 \mathbf{B}_2 + \cdots + \mathbf{a}_n \mathbf{B}_n$$

э

We can also partition A into columns and B into rows; this form is called the **column-row representation** of the product.

$$AB = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \vdots \\ \mathbf{B}_n \end{bmatrix} = \mathbf{a}_1 \mathbf{B}_1 + \mathbf{a}_2 \mathbf{B}_2 + \cdots + \mathbf{a}_n \mathbf{B}_n$$

Notice that the sum resembles a dot product expansion; the difference is that the individual terms are matrices, not scalars. Each term $\mathbf{a}_i \mathbf{B}_i$ is the product of an $m \times 1$ and a $1 \times r$ matrix. Thus, each $\mathbf{a}_i \mathbf{B}_i$ is an $m \times r$ matrix (the same size as AB). The products $\mathbf{a}_i \mathbf{B}_i$ are called outer products, and the sum is called the **outer product expansion** of AB.

Consider the partitioned matrices A and B as follows.

CON	ALICY	T INI	AOE)
	АПСІ		AUE)

メロト メロト メヨト メヨト

Consider the partitioned matrices A and B as follows.

	1	0	0	2	-1 -		4	3	1	2	1
	0	1	0	1	3		-1	2	2	1	1
A =	0	0	1	4	0	B =	1	-5	3	3	1
	0	0	0	1	7		1	0	0	0	2
	0	0	0	7	2		0	1	0	0	3

2

メロト メロト メヨト メヨト

Consider the partitioned matrices A and B as follows.

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 & 0 \\ \hline 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 7 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & 3 & 1 & 2 & 1 \\ -1 & 2 & 2 & 1 & 1 \\ 1 & -5 & 3 & 3 & 1 \\ \hline 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 3 \end{bmatrix}$$

They have the block structures

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad \qquad B = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$$

2

25 / 47

If we ignore for the moment the fact that their entries are matrices, then A appears to be a 2×2 matrix and B a 2×3 matrix. Their product should thus be a 2×3 matrix given by

If we ignore for the moment the fact that their entries are matrices, then A appears to be a 2×2 matrix and B a 2×3 matrix. Their product should thus be a 2×3 matrix given by

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$$

If we ignore for the moment the fact that their entries are matrices, then A appears to be a 2×2 matrix and B a 2×3 matrix. Their product should thus be a 2×3 matrix given by

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} & A_{11}B_{13} + A_{12}B_{23} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} & A_{21}B_{13} + A_{22}B_{23} \end{bmatrix}$$

If we ignore for the moment the fact that their entries are matrices, then A appears to be a 2×2 matrix and B a 2×3 matrix. Their product should thus be a 2×3 matrix given by

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} & A_{11}B_{13} + A_{12}B_{23} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} & A_{21}B_{13} + A_{22}B_{23} \end{bmatrix}$$

But all of the products in this calculation are actually matrix products, so we need to make sure that they are all defined.

A quick check reveals that this is indeed the case, since the numbers of columns in the blocks of A (3 and 2) match the numbers of rows in the blocks of B. The matrices A and B are said to be **partitioned conformably for block multiplication**.

A quick check reveals that this is indeed the case, since the numbers of columns in the blocks of A (3 and 2) match the numbers of rows in the blocks of B. The matrices A and B are said to be **partitioned conformably for block multiplication**.

Carrying out the calculations indicated gives us the product AB in partitioned form:

$$A_{11}B_{11} + A_{12}B_{21} = I_3B_{11} + A_{12}I_2$$

= $B_{11} + A_{12}$
= $\begin{bmatrix} 4 & 3 \\ -1 & 2 \\ 1 & -5 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 1 & 3 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 0 & 5 \\ 5 & -5 \end{bmatrix}$

(日) (同) (日) (日)

The calculations for the other five blocks of AB are similar. Check that the result is % AB

6	2	1	2	2
0	5	2	1	12
5	-5	3	3	9
1	7	0	0	23
7	2	0	0	20

2

28 / 47

メロト メタト メヨト メヨト

(00)		 00
I C.O.N	ΙΑΗΟΥ	OF:
· · · ·		

æ

▲□▶ ▲圖▶ ▲国▶ ▲国▶

When A and B are two $n \times n$ matrices, their product AB will also be an $n \times n$ matrix. A special case occurs when A = B. To define $A^2 = AA$ and, in general, to define A^k as

When A and B are two $n \times n$ matrices, their product AB will also be an $n \times n$ matrix. A special case occurs when A = B. To define $A^2 = AA$ and, in general, to define A^k as

$$A^k = \underbrace{AA\cdots A}_{k \text{ factors}}$$

if k is a positive integer. Thus, $A^1 = A$,

When A and B are two $n \times n$ matrices, their product AB will also be an $n \times n$ matrix. A special case occurs when A = B. To define $A^2 = AA$ and, in general, to define A^k as

$$A^k = \underbrace{AA\cdots A}_{k \text{ factors}}$$

if k is a positive integer. Thus, $A^1 = A$, and it is convenient to define $A^0 = I_n$

イロト イヨト イヨト

The following properties follow immediately from the definitions.

If \boldsymbol{A} is a square matrix and \boldsymbol{r} and \boldsymbol{s} are nonnegative integers, then

•
$$A^r A^s = A^{r+s}$$

•
$$(A^r)^s = A^{rs}$$

If
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, then
 $A^2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} A^3 = A^2 A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}$

If
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, then
 $A^2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \qquad A^3 = A^2 A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}$

and, in general

$$A^{n} = \begin{bmatrix} 2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1} \end{bmatrix} \quad \text{ for all } n \ge 1$$

э.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

If
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, then
 $A^2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \qquad A^3 = A^2 A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}$

and, in general

$$A^{n} = \begin{bmatrix} 2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1} \end{bmatrix} \quad \text{for all } n \ge 1$$

The above statement can be proved by mathematical induction, since it is an infinite collection of statements, one for each natural number n.

(CONAHCYT INAOE)	Linear algebra	July 9 2024	32/47

The basis step is to prove that the formula holds for n = 1. In this case,

$$A^{1} = \begin{bmatrix} 2^{1-1} & 2^{1-1} \\ 2^{1-1} & 2^{1-1} \end{bmatrix} = \begin{bmatrix} 2^{0} & 2^{0} \\ 2^{0} & 2^{0} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = A$$

as required.

2

The basis step is to prove that the formula holds for n = 1. In this case,

$$A^{1} = \begin{bmatrix} 2^{1-1} & 2^{1-1} \\ 2^{1-1} & 2^{1-1} \end{bmatrix} = \begin{bmatrix} 2^{0} & 2^{0} \\ 2^{0} & 2^{0} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = A$$

as required.

The induction hypothesis is to assume that

$$A^{k} = \begin{bmatrix} 2^{k-1} & 2^{k-1} \\ 2^{k-1} & 2^{k-1} \end{bmatrix}$$

for some integer $k\geq 1.$ The induction step is to prove that the formula holds for n=k+1

Using the definition of matrix powers and the induction hypothesis, we compute

Using the definition of matrix powers and the induction hypothesis, we compute

$$A^{k+1} = A^k A = \begin{bmatrix} 2^{k-1} & 2^{k-1} \\ 2^{k-1} & 2^{k-1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

2

Using the definition of matrix powers and the induction hypothesis, we compute

$$A^{k+1} = A^{k}A = \begin{bmatrix} 2^{k-1} & 2^{k-1} \\ 2^{k-1} & 2^{k-1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2^{k-1} + 2^{k-1} & 2^{k-1} + 2^{k-1} \\ 2^{k-1} + 2^{k-1} & 2^{k-1} + 2^{k-1} \end{bmatrix}$$

2

Using the definition of matrix powers and the induction hypothesis, we compute

$$A^{k+1} = A^{k}A = \begin{bmatrix} 2^{k-1} & 2^{k-1} \\ 2^{k-1} & 2^{k-1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2^{k-1} + 2^{k-1} & 2^{k-1} + 2^{k-1} \\ 2^{k-1} + 2^{k-1} & 2^{k-1} + 2^{k-1} \end{bmatrix}$$
$$= \begin{bmatrix} 2^{k} & 2^{k} \\ 2^{k} & 2^{k} \end{bmatrix}$$

2

Using the definition of matrix powers and the induction hypothesis, we compute

$$A^{k+1} = A^{k}A = \begin{bmatrix} 2^{k-1} & 2^{k-1} \\ 2^{k-1} & 2^{k-1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2^{k-1} + 2^{k-1} & 2^{k-1} + 2^{k-1} \\ 2^{k-1} + 2^{k-1} & 2^{k-1} + 2^{k-1} \end{bmatrix}$$
$$= \begin{bmatrix} 2^{k} & 2^{k} \\ 2^{k} & 2^{k} \end{bmatrix}$$
$$= \begin{bmatrix} 2^{(k+1)-1} & 2^{(k+1)-1} \\ 2^{(k+1)-1} & 2^{(k+1)-1} \end{bmatrix}$$

Thus, the formula holds for all $n \ge 1$ by the principle of mathematical induction.

2

If
$$B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
, then

(()	NAH	(Y I) – 1

◆□ > ◆圖 > ◆臣 > ◆臣 > □ 臣

If
$$B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
, then
$$B^2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

2

・ロト ・四ト ・ヨト ・ヨト
lf

$$B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \text{ then}$$
$$B^2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$B^3 = B^2 B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

July 9 2024 35 / 47

2

▲口> ▲圖> ▲理> ▲理>

If $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then $B^{2} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ $B^{3} = B^{2}B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ $B^{4} = B^{3}B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

July 9 2024

イロト イヨト イヨト イヨト

35 / 47

э

If $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then $B^{2} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ $B^{3} = B^{2}B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ $B^{4} = B^{3}B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $B^5 = B^4 B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

July 9 2024

(日)

Thus, $B^5 = B$, and the sequence of powers of B repeats in a cycle of four

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \cdots$$

2

イロト イヨト イヨト イヨト

メロト メロト メヨト メヨト

Definition

The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T obtained by interchanging the rows and columns of A. that is, the *i*-th column of A is the *i*-th row of A^T for all *i*.

イロト イ団ト イヨト イヨト

Let

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 5 & 0 & 1 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \qquad C = \begin{bmatrix} 5 & -1 & 2 \end{bmatrix}$$

0000	1100	IN INCOL
	HCYL	

July 9 2024 39 / 47

2

イロト イヨト イヨト イヨト

Let

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 5 & 0 & 1 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \qquad C = \begin{bmatrix} 5 & -1 & 2 \end{bmatrix}$$

Then their transposes are

$$A^{T} = \begin{bmatrix} 1 & 5\\ 3 & 0\\ 2 & 1 \end{bmatrix} \qquad \qquad B^{T} = \begin{bmatrix} a & c\\ b & d \end{bmatrix} \qquad \qquad C^{T} = \begin{bmatrix} 5\\ -1\\ 2 \end{bmatrix}$$

2

39 / 47

< □ > < □ > < □ > < □ > < □ >

A useful alternative definition of the transpose is given componentwise:

$$(A^T)_{ij} = A_{ji}$$
 for all i and j

< □ > < □ > < □ > < □ > < □ >

A useful alternative definition of the transpose is given componentwise:

$$(A^T)_{ij} = A_{ji}$$
 for all i and j

In words, the entry in row i and column j of A^T is the same as the entry in row j and column i of A.

イロト イヨト イヨト

Definition

A square matrix A is symmetric if $A^T = A$ (that is, if A is equal to its own transpose).

A **symmetric** matrix has the property that it is its own "mirror image" across its main diagonal.

A square matrix A is symmetric if and only if $A_{ij} = A_{ji}$ for all i and j.

イロト イヨト イヨト

Ending

(cor		ICVA	
COI	VAF	1 C Y I	AUE

July 9 2024 42 / 47

æ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

Summary

- Vocabulary: column matrix (vector), row matrix (vector), square matrix, diagonal matrix, identity matrix, zero matrix, and more.
- Matrix addition, scalar multiplication, matrix multiplication.
- Partitioned matrices.
- Matrix powers.
- The transpose of a matrix.

イロト イヨト イヨト

Ending

Homework

Let

$$A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 1 \\ 2 & 0 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 3 & 0 \\ 1 & -1 & 1 \\ -1 & 6 & 4 \end{bmatrix}$$

- Use the matrix-column representation of the product to express each column of *AB* as a liner combination of the columns of *A*.
- Use the row-matrix representation of the product to express each row of AB as a linear combination of the rows of B.
- Compute *AB* using outer products.

(日) (四) (日) (日) (日)

Homework

• Use partitioned matrices to find AB, where

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

2

イロト イヨト イヨト イヨト

Endin

Next topics

- Inverse
- Transpose
- Determinant

メロト メロト メヨト メヨト

Thank you

2

・ロト ・四ト ・ヨト ・ヨト