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Properties of addition and scalar multiplication

Properties of addition and scalar multiplication

Theorem

Let A, B, and C be matrices of the same size and let c and d be scalar. Then

A+B = B +A (commutativity)

(A+B) + C)A+ (B + C) (associativity)

A+O = A

A+ (−A) = O

c(A+B) = cA+ cB (distributivity)

(c+ d)A = cA+ dA (distributivity)

c(dA) = (cd)A

1A = A
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Properties of addition and scalar multiplication

Properties of addition and scalar multiplication

We can define the span of a set of matrices to be the set of all linear
combinations of the matrices.

Describe the span ⟨{A1, A2, A3}⟩, where

A1 =

[
0 1
−1 0

]
A2 =

[
1 0
0 1

]
A3 =

[
1 1
1 1

]
One way to do this is simply to write out a general linear combination of A1, A2,
and A3. Thus,

c1A1 + c2A2 + c3A3 = c1

[
0 1
−1 0

]
+ c2

[
1 0
0 1

]
+ c3

[
1 1
1 1

]
=

[
c2 + c3 c1 + c3
−c1 + c3 c2 + c3

]
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Properties of addition and scalar multiplication

Properties of addition and scalar multiplication

Notice that a matrix

[
w x
y z

]
is in ⟨{A1, A2, A3}⟩ when

[
c2 + c3 c1 + c3
−c1 + c3 c2 + c3

]
=

[
w x
y z

]

The augmented matrix of this system is
0 1 1 w
1 0 1 x
−1 0 1 y
0 1 1 z


and row reduction produces

→


1 0 0 1

2x− 1
2y

0 1 0 − 1
2x− 1

2y + w
0 0 1 1

2x+ 1
2y

0 0 0 w − z


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Properties of addition and scalar multiplication

Properties of addition and scalar multiplication

The only restriction comes from the last row, where clearly we must have
w − z = 0 in order to have a solution. Thus, ⟨{A1, A2, A3}⟩ consists of all

matrices

[
w x
y z

]
for which w = z. That is,

⟨{A1, A2, A3}⟩ =
{[

w x
y w

]
: w, x, y ∈ C

}

(CONAHCYT INAOE) Linear algebra July 9 2024 8 / 63



Properties of addition and scalar multiplication

Properties of addition and scalar multiplication

Note
Linear independence also makes sense for matrices. We say that matrices A1,
A2,..., Ak of the same size are linearly independent if the only solution of the
equation

c1A1 + c2A2 + · · ·+ ckAk = O

is the trivial one: c1 = c2 = · · · = ck = 0. If there are nontrivial coefficients that
satisfy this equation, then A1, A2,..., Ak are called linearly dependent.
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Properties of matrix multiplication
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Properties of matrix multiplication

Properties of matrix multiplication

Consider the matrices

A =

[
2 4
−1 −2

]
B =

[
1 0
1 1

]
Multiplying gives

AB =

[
2 4
−1 −2

] [
1 0
1 1

]
=

[
6 4
−3 −2

] BA =

[
1 0
1 1

] [
2 4
−1 −2

]
=

[
2 4
1 2

]

Thus, AB ̸= BA. So, in contrast to multiplication of real numbers, matrix
multiplication is not commutative (the order of the factors in a product matters!).
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Properties of matrix multiplication

Properties of matrix multiplication

Theorem

Let A, B, and C be matrices (whose sizes are such that the indicated operations
can be performed) and let k be a scalar. Then

A(BC) = (AB)C (associativity)

A(B + C) = AB +AC (left distributivity)

(A+B)C = AC +BC (right distributivity)

k(AB) = (kA)B = A(kB)

ImA = A = AIn if A is m× n (multiplicative identity)
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Properties of the transpose

Properties of the transpose
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Properties of the transpose

Properties of the transpose

Theorem

Let A and B be matrices (whose sizes are such that the indicated operations can
be performed) and let k be a scalar. Then

(AT )T = A

(kA)T = k(AT )

(A+B)T = AT +BT

(AB)T = BTAT

(Ar)T = (AT )r r ≥ 0
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Properties of the transpose

Properties of the transpose

Theorem

(AB)T = BTAT

Proof.

Let rowi(X) be the i-th row of matrix X and let colj(X) be the j-th column of
matrix X. Thus,

[(AB)T ]ij = [AB]ji

= rowj(A) · coli(B)

= colj(A
T ) · rowi(B

T )

= rowi(B
T ) · colj(AT )

= [BTAT ]ij
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Properties of the transpose

Some observations

Let

A =

[
1 2
3 4

]
B =

[
4 −1 0
2 3 1

]
Then

A+AT =

[
1 2
3 4

]
+

[
1 3
2 4

]
=

[
2 5
5 8

]

BBT =

[
4 −1 0
2 3 1

] 4 2
−1 3
0 1

 =

[
17 5
5 14

]

BTB =

 4 2
−1 3
0 1

[
4 −1 0
2 3 1

]
=

20 2 2
2 10 3
2 3 1


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Properties of the transpose

Properties of the transpose

Theorem

(a) If A is a square matrix, then A+AT is a symmetric matrix.
(b) For any matrix A, AAT and ATA are symmetric matrices.

Proof.

(a)
(A+AT )T = AT + (AT )T = AT +A = A+AT

Do you remember the definition of a symmetric matrix?
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The inverse of a matrix

The inverse of a matrix

(CONAHCYT INAOE) Linear algebra July 9 2024 18 / 63



The inverse of a matrix

The inverse of a matrix

Definition

If A is an n× n matrix, an inverse of A is an n× n matrix A′ with the property
that

AA′ = I and A′A = I

where I = In is the n× n identity matrix. If such an A′ exists, then A is called
invertible.
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The inverse of a matrix

The inverse of a matrix

Theorem

If A is an invertible matrix, then its inverse is unique.

Proof.

Temporarily, assume that there are two different inverses

A′A = AA′ = I

A′′A = AA′′ = I

Then,

A′ = IA′

= A′′AA′

= A′′I

= A′′
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The inverse of a matrix

The inverse of a matrix

Theorem

If A is an invertible n× n matrix, then the system of linear equations given by
Ax = b has the unique solution x = A−1b for any b in Rn.

Proof.

Ax = b

A−1Ax = A−1b

Ix = A−1b

x = A−1b

A is invertible and A−1 is unique. Therefore

x = A−1b

which is unique.
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The inverse of a matrix

“Another” point of view

2x+ y = 3

−x+ y = 0
≡

[
2 1 3
−1 1 0

]
≡

[
2 1
−1 1

] [
x
y

]
=

[
3
0

]

What is the vector

[
x
y

]
that, under transformation

[
2 1
−1 1

]
, “lands” on

[
3
0

]
?

where [
2x+ y
−x+ y

]
=

[
2x
−x

]
+

[
y
y

]
= x

[
2
−1

]
+ y

[
1
1

]
=

[
3
0

]

So, “to land” means: to express the vector of constants as a linear combination of
the column vectors of the coefficients matrix.
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The inverse of a matrix

“Another” point of view

f(a) = b

Assume f is bijective.

f−1(f(a)) = f−1(b) = a

(f−1 ◦ f)(a) = a

T

[
a
b

]
=

[
c
d

]
Assume T is invertible.

T−1T

[
a
b

]
= T−1

[
c
d

]
=

[
a
b

]

T−1T

[
a
b

]
=

[
a
b

]
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The inverse of a matrix

Example 1

2x+ y = 3

−x+ y = 1

[
2 1
−1 1

] [
x
y

]
=

[
3
1

]
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The inverse of a matrix

Example 1

e1

e2

e2

[         ]2 1

-1 1

[      ]2

-1

[      ][      ] =  T

e1=  T

T   =

1

1

[
2 1
−1 1

] [
1
0

]
=

[
2
−1

]
,

[
2 1
−1 1

] [
0
1

]
=

[
1
1

]
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The inverse of a matrix

Example 1

e1

e2

[         ]2 1

-1 1
T   =

[
2 1
−1 1

] [
x
y

]
=

[
2x+ y
−x+ y

]
=

[
2x
−x

]
+

[
y
y

]
= x

[
2
−1

]
+ y

[
1
1

]
=

[
3
0

]
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The inverse of a matrix

Example 1

e1

e2

[         ]2 1

-1 1
T   =

[      ][      ]=  +3

0 [      ][      ][      ]2

-1 [      ][      ][      ]1

1
[      ][      ][      ]1

1

[
3
0

]
= 1

[
2
−1

]
+ 1

[
1
1

]
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The inverse of a matrix

Example 1

e1

e2

[         ]2 1

-1 1
T   =

e2[      ][      ] =  T
1

1

[      ]2

-1
e1=  T

detT = det

[
2 1
−1 1

]
= (2)(1)− (−1)(1) = 2 + 1 = 3
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The inverse of a matrix

Example 1

e1

e2

[         ]2 1

-1 1
T   =

[         ]1/3 -1/3

1/3 2/3
T   =

[      ][      ]=  +3

0 [      ][      ][      ]2

-1 [      ][      ][      ]1

1
[      ][      ][      ]1

1

-1

[
x
y

]
= T−1

[
3
0

]
=

[
1/3 −1/3
1/3 2/3

] [
3
0

]
=

[
1
1

]
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The inverse of a matrix

Example 2

2x = 3

y = 0

[
2 0
0 3

] [
x
y

]
=

[
3
0

]
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The inverse of a matrix

Example 2

e1

e2

e2

[         ]2 0

0 3

[      ]2

0

[      ][      ] =  T

e1=  T

T   =

0

3

[
2 0
0 3

] [
1
0

]
=

[
2
0

]
,

[
2 0
0 3

] [
0
1

]
=

[
0
3

]
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The inverse of a matrix

Example 2

e1

e2

e2

[         ]2 0

0 3

[      ]2

0

[      ][      ] =  T

e1=  T

T   =

0

3

detT = det

[
2 0
0 3

]
= (2)(3)− (0)(0) = 6 + 0 = 6
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The inverse of a matrix

Example 2

e1

e2

e2

[         ]2 0

0 3

[      ]2

0

[      ] =  T

e1=  T

T   =

0

3[      ]3/2

1/3

[         ]1/2 0

0 1/3
T   =-1

[
x
y

]
= T−1

[
3
1

]
=

[
1/2 0
0 1/3

] [
3
1

]
=

[
3/2
1/3

]
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The inverse of a matrix

Example 3

x+ 2y = −1

2x+ 4y = −2

[
1 2
2 4

] [
x
y

]
=

[
−1
−2

]
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The inverse of a matrix

Example 3

e1

e2

e2[         ]1 2

2 4

[      ]1

2

[      ] =  T

e1=  T

T   = 2

4

[
1 2
2 4

] [
1
0

]
=

[
1
2

]
,

[
1 2
2 4

] [
0
1

]
=

[
2
4

]
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The inverse of a matrix

Example 3

e1

e2

e2[         ]1 2

2 4

[      ]1

2

[      ] =  T

e1=  T

T   = 2

4

detT = det

[
1 2
2 4

]
= (1)(4)− (2)(2) = 4− 4 = 0
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The inverse of a matrix

Example 3

e1

e2

[         ]1 2

2 4
T   =

[      ]1

-1 [      ]-1
-2

[
1 2
2 4

] [
1
−1

]
=

[
−1
−2

]
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The inverse of a matrix

Example 3

e1

e2

[         ]1 2

2 4
T   =

[      ]-1

0 [      ]-1
-2

[
1 2
2 4

] [
−1
0

]
=

[
−1
−2

]
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The inverse of a matrix

Example 3

e1

e2

[         ]1 2

2 4
T   =

[      ]-1/2
0 [      ]-1

-2

[
1 2
2 4

] [
0

−1/2

]
=

[
−1
−2

]
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The inverse of a matrix

Example 3

e1

e2

[         ]1 2

2 4
T   =

[      ]-3
5 [      ]-1

-2

[
1 2
2 4

] [
5
−3

]
=

[
−1
−2

]
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The inverse of a matrix

Example 3

e1

e2

[         ]1 2

2 4
T   =

[      ]-1
-2

S

(
LS

(
T,

[
−1
−2

]))
=

{[
x

(−x/2)− (1/2)

]
: x ∈ R

}
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The inverse of a matrix

Example 3

e1

e2

[         ]1 2

2 4
T   =

[      ]-2

2

S

(
LS

(
T,

[
−2
2

]))
= ∅
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The inverse of a matrix

The inverse of a matrix

Theorem

If A =

[
a b
c d

]
, then A is invertible if ad− bc ̸= 0, in which case

A−1 =
1

ad− bc

[
d −b
−c a

]
If ad− bc = 0, then A is not invertible. The expression ad− bc is called the
determinant of A, denoted detA.

Proof.

[
d −b
−c a

] [
a b
c d

]
=

[
da− bc db− bd
−ca+ ca −cb+ ad

]
=

[
da− bc 0

0 −cb+ ad

]
= (ad− bc)

[
1 0
0 1

]
Can you see the last step?
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Determinants

Determinants
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Determinants

Determinants

Definition

Let A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

. Then the determinant of A is the scalar

detA = |A| = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
detA = a11 detA11 − a12 detA12 + a13 detA13

=

3∑
j=1

(−1)1+ja1j detA1j

For any square matrix A, detAij is called the (i,j)-minor of A.
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Determinants

Determinants

Another method for calculating the determinant of a 3× 3 matrix is analogous to
the method for calculating the determinant of a 2× 2 matrix.
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Determinants

Determinants

Definition

Let A = [aij ] be an n× n matrix, where n ≥ 2. Then the determinant of A is
the scalar

detA = |A| = a11 detA11 − a12 detA12 + · · ·+ (−1)1+na1n detA1n

=

n∑
j=1

(−1)1+ja1j detA1j

By combining a minor with its plus or minus sign

detA =

n∑
j=1

a1jC1j

where Cij is called the (i,j)-cofactor of A. This way of defining the determinant
is often referred to as cofactor expansion along the first row.
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Properties of invertible matrices

Properties of invertible matrices
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Properties of invertible matrices

Properties of invertible matrices

Theorem

If A is an invertible matrix, then A−1 is invertible and

(A−1)−1 = A

Proof.

(A−1)−1A−1 = I

(A−1)−1A−1A = IA

(A−1)−1I = A

(A−1)−1 = A
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Properties of invertible matrices

Properties of invertible matrices

Theorem

If A is an invertible matrix and c is a nonzero scalar, then cA is invertible matrix
and

(cA)−1 =
1

c
A−1

Proof.

(cA)−1cA = I

(cA)−1cAA−1 = IA−1

(cA)−1cI = A−1

cI(cA)−1 = A−1

c(cA)−1 = A−1

(cA)−1 =
1

c
A−1
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Properties of invertible matrices

Properties of invertible matrices

Theorem

If A and B are invertible matrices of the same size, then AB is invertible and

(AB)−1 = B−1A−1

Proof.

(AB)−1AB = I

(AB)−1ABB−1 = IB−1

(AB)−1AI = B−1

(AB)−1A = B−1

(AB)−1AA−1 = B−1A−1

(AB)−1I = B−1A−1

(AB)−1 = B−1A−1
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Properties of invertible matrices

Properties of invertible matrices

Theorem

If A is an invertible matrix, then An is invertible for all nonnegative integers n and

(An)−1 = (A−1)n

Proof.

Base case

(A1)−1 = (A−1)1

(A)−1 = (A−1)

A−1 = A−1

Induction hypothesis

(Ak)−1 = (A−1)k

Induction step

(Ak)−1 = (A−1)k

(Ak)−1A−1 = (A−1)kA−1

(AAk)−1 = (A−1)k+1

(Ak+1)−1 = (A−1)k+1
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Properties of invertible matrices

Properties of invertible matrices

Theorem

If A is an invertible matrix, then AT is invertible and

(AT )−1 = (A−1)T

Proof.

This is left as homework.
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Properties of invertible matrices

Properties of invertible matrices

Theorem

If A1, A2,..., An are invertible matrices of the same size, then A1A2 · · ·An is
invertible and

(A1A2 . . . An)
−1 = A−1

n · · ·A−1
2 A−1

1

Proof.

This is left as homework.

(CONAHCYT INAOE) Linear algebra July 9 2024 38 / 63



Properties of invertible matrices

Properties of invertible matrices

Definition

If A is an invertible matrix and n is a positive integer, then A−n is defined by

A−n = (A−1)n = (An)−1
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Properties of invertible matrices

Example

Solve the following matrix equation for X (assuming that the matrices involved
are such that all of the indicated operations are defined)

A−1(BX)−1 = (A−1B3)2
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Properties of invertible matrices

Example

A−1(BX)−1 = (A−1B3)2 ⇒ ((BX)A)−1 = (A−1B3)2

⇒ [((BX)A)−1]−1 = [(A−1B3)2]−1

⇒ (BX)A = [(A−1B3)(A−1B3)]−1

⇒ (BX)A = B−3(A−1)−1B−3(A−1)−1

⇒ BXA = B−3AB−3A

⇒ B−1BXAA−1 = B−1B−3AB−3AA−1

⇒ IXI = B−4AB−3I

⇒ X = B−4AB−3
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Elementary matrices

Elementary matrices
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Elementary matrices

Elementary matrices

Definition

An elementary matrix is any matrix that can be obtained by performing an
elementary row operation on an identity matrix.
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Elementary matrices

Elementary matrices

Theorem

Let E be the elementary matrix obtained by performing an elementary row
operation on In. If the same elementary row operation is performed on an n× r
matrix A, the result is the same as the matrix EA.

Proof.

It follows from the definition of matrix multiplication and identity matrix. Since it
is kind of intuitive, we omit the proof.
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Elementary matrices

Elementary matrices

1 0 0
0 1 0
0 0 1

 R2 ↔ R3−−−−−−→

1 0 0
0 0 1
0 1 0


So, 1 0 0

0 0 1
0 1 0

a b c d
e f g h
i j k l

 =

a b c d
i j k l
e f g h


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Elementary matrices

Example

E1 =

1 0 0
0 0 1
0 1 0


Then E1 corresponds to R2 ↔ R3, which is undone by doing R2 ↔ R3 again.

Thus, E−1
1 = E1.

E2
1 =

1 0 0
0 0 1
0 1 0

1 0 0
0 0 1
0 1 0

 =

1 0 0
0 1 0
0 0 1


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Elementary matrices

Example

E2 =

1 0 0
0 4 0
0 0 1


Then E2 comes from 4R2, which is undone by 1

4R2. So,

E−1
2 =

1 0 0
0 1/4 0
0 0 1


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Elementary matrices

Example

E3 =

 1 0 0
0 1 0
−2 0 1


Then E3 comes from −2R1 +R3, which is undone by 2R1 +R3. So,

E−1
3 =

1 0 0
0 1 0
2 0 1


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Elementary matrices

Elementary matrices

Can you see why elementary matrices are invertible? Besides, the inverse of an
elementary matrix is invertible too.

Of course, this comes from how they relate to systems of equations whose
augmented matrix has the identity as reduced row-echelon form (so, there are no
free variables) and to the notion of nonsingular matrices.

Theorem

Each elementary matrix is invertible, and its inverse is an elementary matrix that
performs a row-operation of the same type.
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Elementary matrices

The fundamental theorem of invertible matrices (version 1)

Theorem

Let A be an n× n matrix. The following statements are equivalent

A is nonsingular.

LS(A, 0) has only the trivial solution.

N (A) has only the zero vector.

LS(A,b) has a unique solution for every b ∈ Rn.

A is invertible.

Ax = b has a unique solution for every b ∈ Rn.

Ax = 0 has only the trivial solution.

The reduced row-echelon form of A is In.

A is a product of elementary matrices.
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Elementary matrices

Example

If possible, express A =

[
2 3
1 3

]
as a product of elementary matrices.

We row reduce A as follows

A
R1 ↔ R2−−−−−−→

[
1 3
2 3

]
−2R1 + R2−−−−−−−→

[
1 3
0 −3

]
R2 + R1−−−−−→

[
1 0
0 −3

]
− 1

3R2−−−−→ I2

So, E4E3E2E1A = I, where

E1 =

[
0 1
1 0

]
, E2 =

[
1 0
−2 1

]
, E3 =

[
1 1
0 1

]
, E4 =

[
1 0
0 −1/3

]
Therefore,

A = (E4E3E2E1)
−1 = E−1

1 E−1
2 E−1

3 E−1
4 =

[
0 1
1 0

] [
1 0
2 1

] [
1 −1
0 1

] [
1 0
0 −3

]
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Elementary matrices

Invertible matrices

Theorem

Let A be a square matrix. If B is a square matrix such that either AB = I OR
BA = I, then A is invertible and B = A−1.

Proof.

Let BA = I.

Ax = 0

BAx = B0

Ix = 0

x = 0

By the fundamental theorem of invertible
matrices, A−1 exists, so it satisfies
AA−1 = I = A−1A.

Let us now find A−1.

BA = I

BAA−1 = IA−1

BI = A−1

B = A−1
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BA = I

BAA−1 = IA−1

BI = A−1

B = A−1
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Elementary matrices

Invertible matrices

Cont.

Let AB = I.

b = Ib

= ABb

= A(Bb)

So, x = Bb is the only solution to
Ax = b. By the fundamental theorem of
invertible matrices, A−1 exists, so it
satisfies AA−1 = I = A−1A.

Let us now find A−1.

AB = I

A−1AB = A−1I

IB = A−1

B = A−1
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Elementary matrices

Elementary matrices

Theorem

Let A be a square matrix. If a sequence of elementary row operations reduces A
to I, then the same sequence of elementary row operations transforms I into A−1.

Proof.

A is row equivalent to I, then there is a series of k elementary matrices multiplied
by the left such that

Ek · · ·E2E1A = I

By setting B = Ek · · ·E2E1, this is BA = I. So, by the previous theorem, A is
invertible and A−1 = B. Applying the same sequence of row operations to I is
equivalent to multiplying by the left the same sequence of elementary matrices

Ek · · ·E2E1I = BI

= B

= A−1
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The Gauss-Jordan method for computing the inverse

The Gauss-Jordan method for computing the inverse
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The Gauss-Jordan method for computing the inverse

Gauss-Jordan to find the inverse

Find the inverse of

1 2 −1
2 2 4
1 3 −3


Add the identity to the right and proceed with Gauss-Jordan elimination

[A|I] =

 1 2 −1 1 0 0
2 2 4 0 1 0
1 3 −3 0 0 1


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The Gauss-Jordan method for computing the inverse

Gauss-Jordan to find the inverse

−2R1 + R2−−−−−−−→

 1 2 −1 1 0 0
0 −2 6 −2 1 0
1 3 −3 0 0 1

 −R1 + R3−−−−−−→

 1 2 −1 1 0 0
0 −2 6 −2 1 0
0 1 −2 −1 0 1



− 1
2R2−−−−→

 1 2 −1 1 0 0
0 1 −3 1 −1/2 0
1 1 −2 −1 0 1

 −R2 + R3−−−−−−→

 1 2 −1 1 0 0
0 1 −3 1 −1/2 0
0 0 1 −2 1/2 1


R3 + R1−−−−−→

 1 2 0 −1 1/2 1
0 1 −3 1 −1/2 0
0 0 1 −2 1/2 1

 3R3 + R2−−−−−−→

 1 2 0 −1 1/2 1
0 1 0 −5 1 3
0 0 1 −2 1/2 1


−2R2 + R1−−−−−−−→

 1 0 0 9 −3/2 −5
0 1 0 −5 1 3
0 0 1 −2 1/2 1


∴ A−1 =

 9 −3/2 −5
−5 1 3
−2 1/2 1


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Ending
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Ending

Summary

Matrices can be added together (addition) and multiplied by a scalar or
between them.

Matrix multiplication is not commutative.

If AT = A, the matrix A is symmetric. A+AT , AAT , and ATA are
symmetric matrices.

A square matrix A is invertible if AA′ = I = A′A. A′ is its inverse and is
unique.

If A is invertible, then Ax = b has the unique solution x = A−1b for any b.
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Ending

Summary

Matrices can be seen as transformations (functions) that squishes, expand,
rotate, or flip the original space.

To undo a series of transformations, do them backwards. Namely,
(A1A2 · · ·An)

−1 = A−1
n · · ·A−1

2 A−1
1 .

If A is a product of elementary matrices, then A is invertible.

Knowing AB = I OR BA = I is enough to guarantee that A is invertible
and B = A−1.
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Ending

Homework

Let

A =

[
1 2
2 6

]
b1 =

[
3
5

]
b2 =

[
−1
2

]
b3 =

[
2
0

]
Find A−1. Using A−1, solve Ax = b1, Ax = b2, and Ax = b3. Finally, use
Gauss-Jordan elimination to simultaneously solve the three systems.

Prove that if A is an invertible matrix, then AT is invertible and
(AT )−1 = (A−1)T .

Prove that if a symmetric matrix is invertible, its inverse is symmetric too.

Prove that (Ar)T = (AT )r for every r ≥ 0.

Use mathematical induction to prove that
(A1A2 · · ·An)

−1 = A−1
n · · ·A−1

2 A−1
1 for every n ≥ 1.
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Ending

Next topics

Subspaces.

Basis.

Dimension.

Rank.
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Ending

Thank you
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