Linear algebra Subspaces, basis, dimension, and rank

Jesús García Díaz

CONAHCYT INAOE

July 9 2024

É

 299

メロトメ 伊 トメ ミトメ ミト

Contents

2 [Subspaces associated with matrices](#page-15-0)

[Basis](#page-43-0)

⁵ [Ending](#page-80-0)

重

 299

メロメメ 倒 メメ きょくきょう

Bibliography

<http://linear.ups.edu/>

 299

メロトメ 御 トメ 君 トメ 君 ト

Definition

A subspace of \mathbb{R}^n is any collection S of vectors in \mathbb{R}^n such that:

- **1** The zero vector **0** is in S .
- **2** If u and v are in S, then $u + v$ is in S (the set S is closed under addition).
- \bullet If u is in S and c is an scalar, then cu is in S (the set S is closed under scalar multiplication).

 Ω

 \leftarrow \leftarrow

Definition

A subspace of \mathbb{R}^n is any collection S of vectors in \mathbb{R}^n such that:

- **1** The zero vector **0** is in S .
- **2** If u and v are in S, then $\mathbf{u} + \mathbf{v}$ is in S (the set S is closed under addition).

 \bullet If u is in S and c is an scalar, then cu is in S (the set S is closed under scalar multiplication).

Notice that properties (2) and (3) can be combined. In this way, S would be closed under linear combinations. Namely, If $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ are in S and

 $c_1,c_2,...,c_k$ are scalars, then

$$
c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k \quad \text{is in} \quad S
$$

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Every line and plane through the origin in \mathbb{R}^3 is a subspace of \mathbb{R}^3 . It should be clear geometrically that properties (1) through (3) are satisfied. Here is an algebraic proof in the case of a plane through the origin.

メロトメ 倒 トメ ミトメ ミト

 Ω

Every line and plane through the origin in \mathbb{R}^3 is a subspace of \mathbb{R}^3 . It should be clear geometrically that properties (1) through (3) are satisfied. Here is an algebraic proof in the case of a plane through the origin.

Let \wp be a plane through the origin with direction vectors \mathbf{v}_1 and \mathbf{v}_2 . Hence, $\wp = \langle {\{\mathbf{v}_1, \mathbf{v}_2\}} \rangle$. The zero vector **0** is in \wp , since

 $0 = 0v_1 + 0v_2$

 Ω

メロメ メ御 メメ きょく きょう

Now, let

$$
\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2
$$

$$
\mathbf{v} = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2
$$

be two vectors in \wp . Then,

$$
\mathbf{u} + \mathbf{v} = (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2) + (d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2) = (c_1 + d_1) \mathbf{v}_1 + (c_2 + d_2) \mathbf{v}_2
$$

 299

メロトメ 御 トメ 差 トメ 差 トー

Now, let

$$
\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2
$$

$$
\mathbf{v} = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2
$$

be two vectors in \wp . Then,

$$
\mathbf{u} + \mathbf{v} = (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2) + (d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2) = (c_1 + d_1)\mathbf{v}_1 + (c_2 + d_2)\mathbf{v}_2
$$

Thus, $\mathbf{u} + \mathbf{v}$ is a linear combination of \mathbf{v}_1 and \mathbf{v}_2 and so is in φ . Now, let c be a scalar. Then,

$$
c\mathbf{u} = c(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = (cc_1)\mathbf{v}_1 + (cc_2)\mathbf{v}_2
$$

which shows that cu is also a linear combination of v_1 and v_2 and is therefore in \wp . Since \wp satisfies properties (1) through (3), it is a subspace of $\mathbb{R}^3.$

KORK EXTERNS ORA

Theorem

Let $\mathsf{v}_1, \mathsf{v}_2, ..., \mathsf{v}_k$ be vectors in \mathbb{R}^n . Then, $\langle \{\mathsf{v}_1,\mathsf{v}_2,...,\mathsf{v}_k\} \rangle$ is a subspace of \mathbb{R}^n .

K ロ X x 個 X X 差 X X 差 X 2 → 2 差 → 9 Q Q →

Theorem

Let $\mathsf{v}_1, \mathsf{v}_2, ..., \mathsf{v}_k$ be vectors in \mathbb{R}^n . Then, $\langle \{\mathsf{v}_1,\mathsf{v}_2,...,\mathsf{v}_k\} \rangle$ is a subspace of \mathbb{R}^n .

Proof.

Just generalize the previous example.

つへへ

イロト イ部 トイ ヨ トイ ヨ トー

目

 $2Q$

メロメメ 倒す メミメメ ミメー

Show that the set of all vectors
$$
\begin{bmatrix} x \\ y \\ z \end{bmatrix}
$$
 that satisfy the condition $x = 3y$ and
\n $z = -2y$ forms a subspace of \mathbb{R}^3 .
\nSubstituting the two conditions into $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ yields
\n
$$
\begin{bmatrix} 3y \\ y \\ -2y \end{bmatrix} = y \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}
$$

 299

メロメメ 倒 メメ きょくきょうき

Show that the set of all vectors
$$
\begin{bmatrix} x \\ y \\ z \end{bmatrix}
$$
 that satisfy the condition $x = 3y$ and
\n $z = -2y$ forms a subspace of \mathbb{R}^3 .
\nSubstituting the two conditions into $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ yields
\n
$$
\begin{bmatrix} 3y \\ y \\ -2y \end{bmatrix} = y \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}
$$
\nSince y is arbitrary, the given set of vectors is $\langle \{ \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix} \} \rangle$ and is thus a subspace of \mathbb{R}^3 .

 299

メロメメ 倒 メメ きょくきょうき

K ロ X x 個 X X 差 X X 差 X 2 → 2 差 → 9 Q Q →

Definition

Let A be an $m \times n$ matrix.

- The row space of A is the subspace $\mathcal{R}(A)$ of \mathbb{R}^n spanned by the rows of $A.$
- **The column space** of A is the subspace $\mathcal{C}(A)$ of \mathbb{R}^m spanned by the columns of A.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Consider the matrix

$$
\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}
$$

Ε

 299

メロメメ 倒 メメ きょくきょう

Consider the matrix $\sqrt{ }$ $\overline{1}$ 1 −1 0 1 3 −3 1 $\overline{1}$ **1** Determine whether $\mathbf{b} =$ $\sqrt{ }$ $\overline{}$ 1 2 3 1 \vert is in the column space of A. \bullet Determine whether $\mathbf{w} = \begin{bmatrix} 4 & 5 \end{bmatrix}$ is in the row space of $A.$ Describe $\mathcal{R}(A)$ and $\mathcal{C}(A)$.

 Ω

メロトメ 倒 トメ 君 トメ 君 トー

(1) We know that **b** is a linear combination of the columns of A if and only if the linear system $A\mathbf{x} = \mathbf{b}$ is consistent. We row reduce the augmented matrix as follows:

$$
A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 3 & -3 & 3 \end{bmatrix} \rightarrow A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}
$$

э

 299

メロトメ 御 トメ ミトメ ミト

(1) We know that **b** is a linear combination of the columns of A if and only if the linear system $A\mathbf{x} = \mathbf{b}$ is consistent. We row reduce the augmented matrix as follows:

$$
A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 3 & -3 & 3 \end{bmatrix} \rightarrow A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}
$$

Thus, the system is consistent (and, in fact, has a unique solution). Therefore, **b** is in $C(A)$.

 Ω

メロメメ 倒 メメ ミメメ ヨメー

(2) Elementary row operations simply create linear combinations of the rows of a matrix. That is, they produce vectors only in the row space of the matrix. If the vector **w** is in $\mathcal{R}(A)$, then **w** is a linear combination of the rows of A, so if we augment A by **w** as $\boxed{\frac{A}{m}}$ w $\mathrm{\,]}$ it will be possible to apply elementary row operations to this augmented matrix to reduce it to form $\begin{bmatrix} A' \ \hline \ \hline \ \hline \end{bmatrix}$ 0 $\big]$ using only elementary row operations of the form $kR_i + R_j$, where $j > i$.

メロトメ 倒 トメ 君 トメ 君 トー

(2) So

メロトメ 倒 トメ ミトメ ミト

 $2Q$

(2) So

$\left\lceil \right.$ A w $\Big] =$ $\sqrt{ }$ $\Bigg\}$ 1 −1 0 1 3 −3 4 5 1 $\overline{}$ $\longrightarrow \frac{-3R_1 + R_3}{\longrightarrow}$ $\sqrt{ }$ $\Big\}$ 1 −1 0 1 0 0 4 5 1 \cdot \longrightarrow \longrightarrow $\sqrt{ }$ $\Bigg\}$ 1 −1 0 1 0 0 0 9 1 $\overline{}$ \longrightarrow ^{-9R₂ + R₄} $\sqrt{ }$ $\Big\}$ 1 −1 0 1 0 0 0 0 1 \cdot

Therefore, w is a linear combination of the rows of A and thus w is in $\mathcal{R}(A)$.

メロメメ 倒 メメ ミメメ ヨメー

Therefore, every vector in \mathbb{R}^2 is in $\mathcal{R}(A)$, and so $\mathcal{R}(A) = \mathbb{R}^2$.

 Ω

メロメメ 倒 メメ ミメメ ヨメー

$$
\text{(3b) } \mathcal{C}(A) = \langle \{ \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix} \} \rangle.
$$

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ 「重 」 の Q Q 、

$$
(3b) \mathcal{C}(A) = \langle \{ \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix} \} \rangle.
$$

So, we are looking for the vectors x that satisfy the following equation for any given arbitrary parameters s and t .

$$
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}
$$

目

 298

メロトメ 御 トメ ミトメ ミト

$$
\text{(3b) } \mathcal{C}(A) = \langle \{ \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix} \} \rangle.
$$

So, we are looking for the vectors x that satisfy the following equation for any given arbitrary parameters s and t .

$$
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}
$$

Namely,

$$
s - t = x_1
$$

$$
t = x_2
$$

$$
3s - 3t = x_3
$$

 299

メロメ メ御 メメ きょく きょう

$$
\left[\begin{array}{cc|c}1 & -1 & x_1 \\ 0 & 1 & x_2 \\ 3 & -3 & x_3\end{array}\right] \rightarrow \left[\begin{array}{cc|c}1 & -1 & x_1 \\ 0 & 1 & x_2 \\ 0 & 0 & -3x_1 + x_3\end{array}\right] \rightarrow \left[\begin{array}{cc|c}1 & 0 & x_1 + x_2 \\ 0 & 1 & x_2 \\ 0 & 0 & -3x_1 + x_3\end{array}\right]
$$

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ 「重 」 の Q Q 、

$$
\begin{bmatrix} 1 & -1 & x_1 \ 0 & 1 & x_2 \ 3 & -3 & x_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & x_1 \ 0 & 1 & x_2 \ 0 & 0 & -3x_1 + x_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & x_1 + x_2 \ 0 & 1 & x_2 \ 0 & 0 & -3x_1 + x_3 \end{bmatrix}
$$

So,

$$
0 = -3x_1 + x_3
$$

 299

メロトメ 御 トメ 君 トメ 君 トッ 君

$$
\begin{bmatrix} 1 & -1 & x_1 \ 0 & 1 & x_2 \ 3 & -3 & x_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & x_1 \ 0 & 1 & x_2 \ 0 & 0 & -3x_1 + x_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & x_1 + x_2 \ 0 & 1 & x_2 \ 0 & 0 & -3x_1 + x_3 \end{bmatrix}
$$

So,

$$
0 = -3x_1 + x_3
$$

Thus,

$$
\mathcal{C}(A) = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ 3x_1 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}
$$

 \equiv

 299

メロメメ 倒 メメ きょくきょう

Theorem

Let B be any matrix that is row equivalent to a matrix A. Then $\mathcal{R}(B) = \mathcal{R}(A)$.

メロトメ 倒 トメ ミトメ ミト

 $2Q$

Theorem

Let B be any matrix that is row equivalent to a matrix A. Then $\mathcal{R}(B) = \mathcal{R}(A)$.

Proof.

Since B is row equivalent to A , there is a series of row operations that transforms A into B. Therefore, each row in B is a linear combination of the rows in A . Thus, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

The same applies from B to A. So, $\mathcal{R}(B) \subseteq \mathcal{R}(A)$. Therefore, $\mathcal{R}(A) = \mathcal{R}(B).$

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Theorem

Let A be an $m \times n$ matrix and let N be the set of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. Then N is a subspace of \mathbb{R}^n .

メロメ メタメメ ミメメ ヨメ

 Ω

Theorem

Let A be an $m \times n$ matrix and let N be the set of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. Then N is a subspace of \mathbb{R}^n .

Proof.

First, notice that $A\mathbf{0}_n = \mathbf{0}_m$. So, $\mathbf{0}_n$ is in N.

∍

Ξ **IN**

K ロ ▶ K 何 ▶

Theorem

Let A be an $m \times n$ matrix and let N be the set of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. Then N is a subspace of \mathbb{R}^n .

Proof.

First, notice that $A\mathbf{0}_n = \mathbf{0}_m$. So, $\mathbf{0}_n$ is in N.

Now, let **u** and **v** be in N .

$$
A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}
$$

which means that $\mathbf{u} + \mathbf{v}$ is in N.

Þ

 Ω

Ξ
Theorem

Let A be an $m \times n$ matrix and let N be the set of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. Then N is a subspace of \mathbb{R}^n .

Proof.

First, notice that $A\mathbf{0}_n = \mathbf{0}_m$. So, $\mathbf{0}_n$ is in N.

Now, let \bf{u} and \bf{v} be in N .

$$
A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}
$$

which means that $\mathbf{u} + \mathbf{v}$ is in N.

Finally, for any scalar c

$$
A(c\mathbf{u}) = c(A\mathbf{u}) = c\mathbf{0} = \mathbf{0}
$$

Þ

4 0 8

4 伺 ▶

Ξ \mathbf{p}

Definition

Let A be an $m \times n$ matrix. The **null space** of A is the subspace of \mathbb{R}^n consisting of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. It is denoted by $\mathcal{N}(A)$.

 Ω

メロトメ 倒下 メミトメ

Theorem

Let A be a matrix whose entries are real numbers. For any system of linear equations $A\mathbf{x} = \mathbf{b}$, exactly one of the following is true:

- There is no solution.
- There is a unique solution.
- There are infinitely many solutions.

 Ω

 $A \Box B$ $A \Box B$ $A \Box B$

Theorem

Let A be a matrix whose entries are real numbers. For any system of linear equations $A\mathbf{x} = \mathbf{b}$, exactly one of the following is true:

- There is no solution.
- There is a unique solution.
- There are infinitely many solutions.

Proof.

Notice that we want to prove that there cannot be a finite (greater than 1) number of solutions. So, lets see what happens when the system has two different solutions x_1 and x_2 . So,

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right. \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right. \right. \right. \end{array}$

$$
A\mathbf{x}_1 = \mathbf{b} \text{ and } A\mathbf{x}_2 = \mathbf{b}
$$

where $x_1 \neq x_2$. Thus,

$$
A(\mathbf{x}_1 - \mathbf{x}_2) = A\mathbf{x}_1 - A\mathbf{x}_2 = \mathbf{b} - \mathbf{b} = \mathbf{0}
$$

÷,

 OQ

$$
A\mathbf{x}_1 = \mathbf{b} \text{ and } A\mathbf{x}_2 = \mathbf{b}
$$

where $x_1 \neq x_2$. Thus,

$$
A(\mathbf{x}_1 - \mathbf{x}_2) = A\mathbf{x}_1 - A\mathbf{x}_2 = \mathbf{b} - \mathbf{b} = \mathbf{0}
$$

Let $x_0 = x_1 - x_2$. So, $x_0 \neq 0$ and $Ax_0 = 0$. Namely, $\mathcal{N}(A)$ is non trivial. Since $\mathcal{N}(A)$ is closed under scalar multiplication, $c\mathbf{x}_0$ is in $\mathcal{N}(A)$ for any c. Therefore, $\mathcal{N}(A)$ has infinite elements.

 Ω

メロトメ 伊 トメ ミトメ ミト

$$
A\mathbf{x}_1 = \mathbf{b} \text{ and } A\mathbf{x}_2 = \mathbf{b}
$$

where $x_1 \neq x_2$. Thus,

$$
A(\mathbf{x}_1 - \mathbf{x}_2) = A\mathbf{x}_1 - A\mathbf{x}_2 = \mathbf{b} - \mathbf{b} = \mathbf{0}
$$

Let $x_0 = x_1 - x_2$. So, $x_0 \neq 0$ and $Ax_0 = 0$. Namely, $\mathcal{N}(A)$ is non trivial. Since $\mathcal{N}(A)$ is closed under scalar multiplication, $c\mathbf{x}_0$ is in $\mathcal{N}(A)$ for any c. Therefore, $\mathcal{N}(A)$ has infinite elements.

Now, consider all the vectors of the form $x_1 + c x_0$, for any c.

$$
A(\mathbf{x}_1 + c\mathbf{x}_0) = A\mathbf{x}_1 + cA\mathbf{x}_0 = \mathbf{b} + c\mathbf{0} = \mathbf{b}
$$

Thus, there are infinite solutions to $A\mathbf{x} = \mathbf{b}$.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

[Linear algebra](#page-0-0) **CONAHCYT INC.** Inc. 24/49

 299

メロトメ 御 トメ 君 トメ 君 トッ 君

Definition

- A basis for a subset S of \mathbb{R}^n is a set of vectors in S that
	- \bullet spans S and
	- o is linearly independent.

 \Rightarrow

 $2Q$

イロト イ御 トイミトイ

The standard unit vectors $\mathbf{e}_1,\mathbf{e}_2,...,\mathbf{e}_n$ in \mathbb{R}^n are linearly independent and span \mathbb{R}^n . Therefore, they form a basis for \mathbb{R}^n , called the standard basis.

[Basis](#page-43-0)

э (CONAHCYT INAOE) **[Linear algebra](#page-0-0)** Linear algebra July 9 2024 26 / 49

 298

メロトメ 伊 トメ ミトメ ミト

Find a basis for $S = \langle {\bf{u}, v, w} \rangle$, where

$$
\mathbf{u} = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 0 \\ -5 \\ 1 \end{bmatrix}
$$

重

 299

メロトメ 倒 トメ 君 トメ 君 トッ

Find a basis for $S = \langle \{u, v, w\} \rangle$, where

$$
\mathbf{u} = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 0 \\ -5 \\ 1 \end{bmatrix}
$$

[Basis](#page-43-0)

The vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} already span S , so they will be a basis for S if they are also linearly independent. It is easy to determine that they are not; indeed, $w = 2u - 3v$.

メロトメ 伊 トメ ミトメ ミト

 Ω

Find a basis for $S = \langle \{u, v, w\} \rangle$, where

$$
\mathbf{u} = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 0 \\ -5 \\ 1 \end{bmatrix}
$$

[Basis](#page-43-0)

The vectors **u**, **v**, and **w** already span S, so they will be a basis for S if they are also linearly independent. It is easy to determine that they are not; indeed, $w = 2u - 3v$.

Thus, we can ignore **w**, i.e., $\langle \{u, v, w\} \rangle = \langle \{u, v\} \rangle$. Since **u** and **v** are linearly independent, they form a basis for S . (Geometrically, \mathbf{u} , \mathbf{v} , and \mathbf{w} lie within the same plane, and **u** and **u** can serve as direction vectors for this plane.)

 Ω

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

[Basis](#page-43-0)

 \bullet Find the reduced row echelon form R of A.

 Ω

 \leftarrow \leftarrow

[Basis](#page-43-0)

- \bullet Find the reduced row echelon form R of A.
- Use the nonzero row vectors of R (containing the leading 1s) to form a basis for $\mathcal{R}(A)$.

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right. \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right. \right. \right. \end{array}$

[Basis](#page-43-0)

- \bullet Find the reduced row echelon form R of A.
- Use the nonzero row vectors of R (containing the leading 1s) to form a basis for $\mathcal{R}(A)$.
- \bullet Use the column vectors of A that correspond to the columns of R containing the leading 1s (the pivot columns) to form a basis for $C(A)$.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

[Basis](#page-43-0)

- \bullet Find the reduced row echelon form R of A.
- Use the nonzero row vectors of R (containing the leading 1s) to form a basis for $\mathcal{R}(A)$.
- \bullet Use the column vectors of A that correspond to the columns of R containing the leading 1s (the pivot columns) to form a basis for $C(A)$.
- Solve for the leading variables of $Rx = 0$ in terms of the free variables, set the free variables equal to parameters, substitute back into x, and write the result as a linear combination of f vectors (where f is the number of free variables). These f vectors form a basis for $\mathcal{N}(A)$.

 Ω

メロメメ 倒 メメ きょくきょう

Find a basis for $C(A)$, where

$$
A = \begin{bmatrix} 1 & 1 & 3 & 1 & 6 \\ 2 & -1 & 0 & 1 & -1 \\ -3 & 2 & 1 & -2 & 1 \\ 4 & 1 & 6 & 1 & 3 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

重

 299

メロメ メ御 メメ きょうほうし

1 $\overline{1}$ $\overline{1}$ $\overline{1}$

Find a basis for $C(A)$, where

$$
A = \begin{bmatrix} 1 & 1 & 3 & 1 & 6 \\ 2 & -1 & 0 & 1 & -1 \\ -3 & 2 & 1 & -2 & 1 \\ 4 & 1 & 6 & 1 & 3 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

Let a_i be a column vector in A and r_i a column vector in reduced row echelon form.

メロメメ 御 メメ きょくきょう

重

 299

Find a basis for $C(A)$, where

$$
A = \begin{bmatrix} 1 & 1 & 3 & 1 & 6 \\ 2 & -1 & 0 & 1 & -1 \\ -3 & 2 & 1 & -2 & 1 \\ 4 & 1 & 6 & 1 & 3 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

[Basis](#page-43-0)

Let a_i be a column vector in A and r_i a column vector in reduced row echelon form.

Can you see why r_3 is a linear combination of r_1 and r_2 ? Can you see why r_4 is linearly independent from r_1 and r_2 ?

 Ω

イロト イ押 トイヨ トイヨ トー

Find a basis for $C(A)$, where

$$
A = \begin{bmatrix} 1 & 1 & 3 & 1 & 6 \\ 2 & -1 & 0 & 1 & -1 \\ -3 & 2 & 1 & -2 & 1 \\ 4 & 1 & 6 & 1 & 3 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

[Basis](#page-43-0)

Let a_i be a column vector in A and r_i a column vector in reduced row echelon form.

Can you see why r_3 is a linear combination of r_1 and r_2 ? Can you see why r_4 is linearly independent from r_1 and r_2 ?

So, \mathbf{r}_3 and \mathbf{r}_5 do not contribute to $\mathcal{C}(R)$. Column vectors \mathbf{r}_1 , \mathbf{r}_2 , and \mathbf{r}_4 are linearly independent (they are standard unit vectors). Therefore, a basis for $C(A)$ is

$$
\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4\} = \left\{ \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -2 \\ 1 \end{bmatrix} \right\}
$$

Can you see that $C(A) \neq C(R)$?

 Ω

イロト イ押 トイヨ トイヨ トー

Find a basis for $\mathcal{N}(A)$.

重

 299

メロトメ 倒 トメ ミトメ ミトー

Find a basis for $\mathcal{N}(A)$. Actually, nothing is new here. We are only changing the vocabulary. We must find the solutions to $A\mathbf{x} = \mathbf{0}$. Using the reduced row echelon form

$$
R = \begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

 Ω

メロトメ 倒 トメ ミトメ ミト

Find a basis for $\mathcal{N}(A)$. Actually, nothing is new here. We are only changing the vocabulary. We must find the solutions to $Ax = 0$. Using the reduced row echelon form

[Basis](#page-43-0)

$$
R = \begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

we get

$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -s+t \\ -2s+3t \\ s \\ -4t \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -3 \\ 0 \\ -4 \\ 1 \end{bmatrix} = s\mathbf{u} + t\mathbf{v}
$$

(CONAHCYT INAOE) [Linear algebra](#page-0-0) July 9 2024 30 / 49

∍

 Ω

メロトメ 倒 トメ ミトメ ミト

Find a basis for $\mathcal{N}(A)$. Actually, nothing is new here. We are only changing the vocabulary. We must find the solutions to $Ax = 0$. Using the reduced row echelon form

$$
R = \begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

we get

$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -s+t \\ -2s+3t \\ s \\ -4t \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -3 \\ 0 \\ -4 \\ 1 \end{bmatrix} = s\mathbf{u} + t\mathbf{v}
$$

A basis for $\mathcal{N}(A)$ is $\{u, v\}$

 $2Q$

メロトメ 伊 トメ ミトメ ミト

 299

メロメ オ御 ドメ 君 ドメ 君 ドー

Theorem

Let S be a subspace of \mathbb{R}^n . Then, any two basis for S have the same number of vectors.

活

 Ω

メロトメ 倒下 メミトメ

Theorem

Let S be a subspace of \mathbb{R}^n . Then, any two basis for S have the same number of vectors.

Proof.

This is left as homework.

 \Rightarrow

メロトメ 倒下 メミトメ

 QQ

Theorem

Let S be a subspace of \mathbb{R}^n . Then, any two basis for S have the same number of vectors.

Proof.

This is left as homework.

Definition

If S is a subspace of \mathbb{R}^n , then the number of vectors in a basis for S is called the **dimension** of S , denoted $\dim(S)$.

 Ω

メロトメ 倒下 メミトメ

Theorem

The row and column spaces of a matrix A have the same dimension.

 299

メロメメ 御 メメ きょくきょう

Theorem

The row and column spaces of a matrix A have the same dimension.

Proof.

This is left as homework.

 $2Q$

メロメメ 倒 メメ きょくきょう

Theorem

The row and column spaces of a matrix A have the same dimension.

Proof.

This is left as homework.

Definition

The rank of a matrix A is the dimension of its row and column spaces and is denoted by $r(A)$.

 Ω

メロトメ 倒 トメ ミトメ ミト

Theorem

For any matrix A,

$$
r(A^T) = r(A)
$$

重

 299

メロメメ 倒 メメ ミメメ ミメ

Theorem

For any matrix A,

$$
r(A^T) = r(A)
$$

$$
r(AT) = \dim(\mathcal{C}(AT))
$$

= $\dim(\mathcal{R}(A))$
= $r(A)$

Definition

The nullity of a matrix A is the dimension of its null space and is denoted by $n(A)$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Definition

The nullity of a matrix A is the dimension of its null space and is denoted by $n(A)$.

In other words, $n(A)$ is the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$, which equals the number of free variables in the solution.

 Ω

メロトメ 倒 トメ ミトメ ミト
Dimension and rank

Theorem (the rank theorem)

If A is an $m \times n$ matrix, then

 $r(A) + n(A) = n$

É

 299

メロトメ 御 トメ ミトメ ミト

Dimension and rank

Theorem (the rank theorem)

If A is an $m \times n$ matrix, then

$$
r(A) + n(A) = n
$$

Proof.

Let R be the reduced row echelon form of A and let $r(A) = r$. Then, R has r leading 1s. So, there are r dependent variables and $n - r$ free variables in the solution set of $A\mathbf{x} = \mathbf{0}$. Since $\dim(n(A)) = n - r$,

$$
r(A) + n(A) = r + (n - r)
$$

$$
= n
$$

 Ω

メロトメ 倒 トメ ミトメ ミト

Find the nullity of :

$$
M = \begin{bmatrix} 2 & 3 \\ 1 & 5 \\ 4 & 7 \\ 3 & 6 \end{bmatrix}
$$

重

 299

メロメ オ御 ドメ 重 ドメ 重 ドー

Find the nullity of :

$$
M = \begin{bmatrix} 2 & 3 \\ 1 & 5 \\ 4 & 7 \\ 3 & 6 \end{bmatrix}
$$

Since the two columns of M are clearly linearly independent, $r(M) = 2$. Thus, by the rank theorem,

$$
n(M) = 2 - r(M) = 2 - 2 = 0
$$

つへへ

メロメ メ御 メメ きょく きょう

Find the nullity of :

$$
N = \begin{bmatrix} 2 & 1 & -2 & -1 \\ 4 & 4 & -3 & 1 \\ 2 & 7 & 1 & 8 \end{bmatrix}
$$

Ε

 299

メロトメ 倒 トメ ミトメ ミトー

Find the nullity of :

$$
N = \begin{bmatrix} 2 & 1 & -2 & -1 \\ 4 & 4 & -3 & 1 \\ 2 & 7 & 1 & 8 \end{bmatrix}
$$

There is no obvious dependence among the rows or columns of N , so we apply row operations to reduce it to

$$
\begin{bmatrix} 2 & 1 & -2 & -1 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

We have reduced the matrix far enough (we do not need reduced row echelon form here, since we are not looking for a basis for the null space). We see that there are only two nonzero rows, so $r(N) = 2$. Hence,

$$
n(N) = 4 - r(N) = 4 - 2 = 2
$$

 Ω

メロトメ 倒 トメ 君 トメ 君 トー

The fundamental theorem of invertible matrices (version 2)

Theorem

Let A be an $n \times n$ matrix. The following statements are equivalent

- \bullet A is nonsingular.
- \bullet $\mathcal{LS}(A, \mathbf{0})$ has only the trivial solution.
- \bullet $\mathcal{N}(A)$ has only the zero vector.
- $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$.
- \bullet A is invertible.
- $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$.
- $Ax = 0$ has only the trivial solution.
- The reduced row-echelon form of A is I_n .
- \bullet A is a product of elementary matrices.

 Ω

K ロ ▶ K 何 ▶ K ミ ▶

The fundamental theorem of invertible matrices (version 2)

Theorem

More equivalent statements

- \bullet $r(A) = n$.
- $n(A) = 0$.
- \bullet The column vectors of A are linearly independent.
- The column vectors of A span \mathbb{R}^n , i.e., $C(A) = \mathbb{R}^n$.
- The column vectors of A are a basis for \mathbb{R}^n .
- \bullet The row vectors of A are linearly independent.
- The row vectors of A span \mathbb{R}^n , i.e., $\mathcal{R}(A) = \mathbb{R}^n$. \bullet
- The row vectors of A are a basis for \mathbb{R}^n .

 Ω

重

 299

メロトメ 倒 トメ ミトメ ミト

A subspace (of a vector space) contains the zero vector and is closed under linear combinations.

[Ending](#page-80-0)

- The row space of $A_{m \times n}$, $\mathcal{R}(A)$, is the subspace of \mathbb{R}^n spanned by the rows of A.
- The column space of $A_{m \times n}$, $\mathcal{C}(A)$, is the subspace of \mathbb{R}^m spanned by the columns of A.
- The null space of $A_{m \times n}$, $\mathcal{N}(A)$, is a subspace of \mathbb{R}^n .

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

- A basis for a subset S of \mathbb{R}^n is a set of vectors in S that spans S and is linearly independent.
- If S is a subspace of \mathbb{R}^n , then the number of vectors in a basis for S is called the **dimension** of S, denoted by $dim(S)$.
- For any matrix A, $\mathcal{R}(A) = \mathcal{C}(A)$.
- $r(A) + n(A) = n$, where $r(A)$ is the rank of the matrix and $n(A)$ is its nullity.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

[Ending](#page-80-0)

Homework

- \bullet Let S be the collection of vectors that satisfy the given property. Is S a subspace of \mathbb{R}^2 ?
	- $\bullet x = 0.$
	- 2 $y = 2x$.
	- $3x > 0, y > 0.$
	- 4 $xy \ge 0$.
- Let S be the collection of vectors that satisfy the given property. Is S a subspace of \mathbb{R}^3 ?

\n- **①**
$$
x = y = z
$$
.
\n- **②** $z = 2x$, $y = 0$.
\n- **④** $x - y + z = 1$.
\n- **④** $|x - y| = |y - z|$.
\n

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Homework

- Prove the theorems from slides 32 and 33.
- Is b in $C(A)$? Is w in $\mathcal{R}(A)$?

0
$$
A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}
$$
, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}$.
\n**0** $A = \begin{bmatrix} 1 & 1 & -3 \\ 0 & 2 & 1 \\ 1 & -1 & 4 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 2 & 4 & -5 \end{bmatrix}$.

重

 299

メロメ メ御 トメ ミメ メ ミメー

Homework

• Find a basis for $\mathcal{R}(A)$, $\mathcal{C}(A)$, and $\mathcal{N}(A)$?

$$
\begin{aligned}\n\bullet \ A &= \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix} . \\
\bullet \ A &= \begin{bmatrix} 1 & 1 & -3 \\ 0 & 2 & 1 \\ 1 & -1 & -4 \end{bmatrix} . \\
\bullet \ A &= \begin{bmatrix} 2 & -4 & 0 & 2 & 1 \\ -1 & 2 & 1 & 2 & 3 \\ 1 & -2 & 1 & 4 & 4 \end{bmatrix}\n\end{aligned}
$$

.

[Ending](#page-80-0)

重

 299

メロトメ 倒 トメ きょくきょう

Homework

$$
\bullet \quad \mathsf{ls} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad \mathsf{a} \quad \mathsf{basis} \quad \mathsf{for} \quad \mathbb{R}^4?
$$
\n
$$
\bullet \quad \mathsf{ls} \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathsf{a} \quad \mathsf{basis} \quad \mathsf{for} \quad \mathbb{R}^4?
$$

(CONAHCYT INAOE) [Linear algebra](#page-0-0) July 9 2024 47 / 49

 299

メロメメ 倒す メミメメ ミメーミー

Next topics

• Eigenvalues and eigenvectors?

重 (CONAHCYT INAOE) [Linear algebra](#page-0-0) July 9 2024 48/49

 299

メロトメ 倒 トメ きょくきょう

Thank you

(CONAHCYT INAOE) [Linear algebra](#page-0-0) July 9 2024 49/49

重

 299

メロメメ 倒 メメ ミメメ ミメ