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Subspaces

Subspaces

Definition

A subspace of Rn is any collection S of vectors in Rn such that:

1 The zero vector 0 is in S.

2 If u and v are in S, then u+ v is in S (the set S is closed under addition).

3 If u is in S and c is an scalar, then cu is in S (the set S is closed under
scalar multiplication).

Notice that properties (2) and (3) can be combined. In this way, S would be
closed under linear combinations. Namely, If u1,u2,...,uk are in S and

c1,c2,...,ck are scalars, then

c1u1 + c2u2 + · · ·+ ckuk is in S
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Subspaces

Example

Every line and plane through the origin in R3 is a subspace of R3. It should be
clear geometrically that properties (1) through (3) are satisfied. Here is an
algebraic proof in the case of a plane through the origin.

Let ℘ be a plane through the origin with direction vectors v1 and v2. Hence,
℘ = ⟨{v1, v2}⟩. The zero vector 0 is in ℘, since

0 = 0v1 + 0v2
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Subspaces

Example

Now, let
u = c1v1 + c2v2

v = d1v1 + d2v2

be two vectors in ℘. Then,

u+ v = (c1v1 + c2v2) + (d1v1 + d2v2) = (c1 + d1)v1 + (c2 + d2)v2

Thus, u+ v is a linear combination of v1 and v2 and so is in ℘. Now, let c be a
scalar. Then,

cu = c(c1v1 + c2v2) = (cc1)v1 + (cc2)v2

which shows that cu is also a linear combination of v1 and v2 and is therefore in
℘. Since ℘ satisfies properties (1) through (3), it is a subspace of R3.
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Subspaces

Subspaces

Theorem

Let v1, v2, ..., vk be vectors in Rn. Then, ⟨{v1, v2, ..., vk}⟩ is a subspace of Rn.

Proof.

Just generalize the previous example.
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Subspaces

Example

Show that the set of all vectors

xy
z

 that satisfy the condition x = 3y and

z = −2y forms a subspace of R3.

Substituting the two conditions into

xy
z

 yields

 3y
y

−2y

 = y

 3
1
−2



Since y is arbitrary, the given set of vectors is ⟨{

 3
1
−2

}⟩ and is thus a subspace of

R3.
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Subspaces associated with matrices
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Subspaces associated with matrices

Subspaces associated with matrices

Definition

Let A be an m× n matrix.

1 The row space of A is the subspace R(A) of Rn spanned by the rows of A.

2 The column space of A is the subspace C(A) of Rm spanned by the
columns of A.

(CONAHCYT INAOE) Linear algebra July 9 2024 11 / 49



Subspaces associated with matrices

Example

Consider the matrix 1 −1
0 1
3 −3



1 Determine whether b =

12
3

 is in the column space of A.

2 Determine whether w =
[
4 5

]
is in the row space of A.

3 Describe R(A) and C(A).
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Subspaces associated with matrices

Example

(1) We know that b is a linear combination of the columns of A if and only if the
linear system Ax = b is consistent. We row reduce the augmented matrix as
follows:

A =

 1 −1 1
0 1 2
3 −3 3

 → A =

 1 0 3
0 1 2
0 0 0



Thus, the system is consistent (and, in fact, has a unique solution). Therefore, b
is in C(A).
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Subspaces associated with matrices

Example

(2) Elementary row operations simply create linear combinations of the rows of a
matrix. That is, they produce vectors only in the row space of the matrix. If the
vector w is in R(A), then w is a linear combination of the rows of A, so if we

augment A by w as

[
A
w

]
it will be possible to apply elementary row operations

to this augmented matrix to reduce it to form

[
A′

0

]
using only elementary row

operations of the form kRi +Rj , where j > i.
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Subspaces associated with matrices

Example

(2) So [
A
w

]
=


1 −1
0 1
3 −3
4 5

 −3R1 + R3−−−−−−−→


1 −1
0 1
0 0
4 5


−4R1 + R4−−−−−−−→


1 −1
0 1
0 0
0 9

 −9R2 + R4−−−−−−−→


1 −1
0 1
0 0
0 0



Therefore, w is a linear combination of the rows of A and thus w is in R(A).
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Subspaces associated with matrices

Example

(3a) It is easy to check that, for any vector w = [x, y], the augmented matrix[
A
w

]
reduces to 

1 0
0 1
0 0
0 0


Therefore, every vector in R2 is in R(A), and so R(A) = R2.
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Subspaces associated with matrices

Example

(3b) C(A) = ⟨{

10
3

 ,

−1
1
−3

}⟩.

So, we are looking for the vectors x that satisfy the following equation for any
given arbitrary parameters s and t.x1

x2

x3

 = s

10
3

+ t

−1
1
−3


Namely,

s− t = x1

t = x2

3s− 3t = x3
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Subspaces associated with matrices

Example

 1 −1 x1

0 1 x2

3 −3 x3

 →

 1 −1 x1

0 1 x2

0 0 −3x1 + x3

 →

 1 0 x1 + x2

0 1 x2

0 0 −3x1 + x3



So,

0 = −3x1 + x3

Thus,

C(A) =
{ x1

x2

3x1

 : x1, x2 ∈ R
}
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Subspaces associated with matrices

Subspaces associated with matrices

Theorem

Let B be any matrix that is row equivalent to a matrix A. Then R(B) = R(A).

Proof.

Since B is row equivalent to A, there is a series of row operations that transforms
A into B. Therefore, each row in B is a linear combination of the rows in A.
Thus, R(A) ⊆ R(B).

The same applies from B to A. So, R(B) ⊆ R(A). Therefore,
R(A) = R(B).
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Subspaces associated with matrices

Subspaces associated with matrices

Theorem

Let A be an m× n matrix and let N be the set of solutions of the homogeneous
linear system Ax = 0. Then N is a subspace of Rn.

Proof.

First, notice that A0n = 0m. So, 0n is in N .

Now, let u and v be in N .

A(u+ v) = Au+Av = 0+ 0 = 0

which means that u+ v is in N .

Finally, for any scalar c
A(cu) = c(Au) = c0 = 0
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Subspaces associated with matrices

Subspaces associated with matrices

Definition

Let A be an m× n matrix. The null space of A is the subspace of Rn consisting
of solutions of the homogeneous linear system Ax = 0. It is denoted by N (A).
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Subspaces associated with matrices

Subspaces associated with matrices

Theorem

Let A be a matrix whose entries are real numbers. For any system of linear
equations Ax = b, exactly one of the following is true:

There is no solution.

There is a unique solution.

There are infinitely many solutions.

Proof.

Notice that we want to prove that there cannot be a finite (greater than 1)
number of solutions. So, lets see what happens when the system has two different
solutions x1 and x2. So,
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Subspaces associated with matrices

Proof (cont.)

Ax1 = b and Ax2 = b

where x1 ̸= x2. Thus,

A(x1 − x2) = Ax1 −Ax2 = b− b = 0

Let x0 = x1 − x2. So, x0 ̸= 0 and Ax0 = 0. Namely, N (A) is non trivial. Since
N (A) is closed under scalar multiplication, cx0 is in N (A) for any c. Therefore,
N (A) has infinite elements.

Now, consider all the vectors of the form x1 + cx0, for any c.

A(x1 + cx0) = Ax1 + cAx0 = b+ c0 = b

Thus, there are infinite solutions to Ax = b.
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Basis
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Basis

Basis

Definition

A basis for a subset S of Rn is a set of vectors in S that

spans S and

is linearly independent.
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Basis

Basis

The standard unit vectors e1, e2, ..., en in Rn are linearly independent and span
Rn. Therefore, they form a basis for Rn, called the standard basis.
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Basis

Example

Find a basis for S = ⟨{u, v,w}⟩, where

u =

 3
−1
5

 v =

21
3

 w =

 0
−5
1



The vectors u, v, and w already span S, so they will be a basis for S if they are
also linearly independent. It is easy to determine that they are not; indeed,
w = 2u− 3v.

Thus, we can ignore w, i.e., ⟨{u, v,w}⟩ = ⟨{u, v}⟩. Since u and v are linearly
independent, they form a basis for S. (Geometrically, u, v, and w lie within the
same plane, and u and u can serve as direction vectors for this plane.)
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Basis

Basis

Following is a summary of the most effective procedure to use to find bases for
the row space, the column space, and the null space of a matrix A.

Find the reduced row echelon form R of A.

Use the nonzero row vectors of R (containing the leading 1s) to form a basis
for R(A).

Use the column vectors of A that correspond to the columns of R containing
the leading 1s (the pivot columns) to form a basis for C(A).
Solve for the leading variables of Rx = 0 in terms of the free variables, set
the free variables equal to parameters, substitute back into x, and write the
result as a linear combination of f vectors (where f is the number of free
variables). These f vectors form a basis for N (A).
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Basis

Example

Find a basis for C(A), where

A =


1 1 3 1 6
2 −1 0 1 −1
−3 2 1 −2 1
4 1 6 1 3

 R =


1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0



Let ai be a column vector in A and ri a column vector in reduced row echelon
form.
Can you see why r3 is a linear combination of r1 and r2? Can you see why r4 is
linearly independent from r1 and r2?
So, r3 and r5 do not contribute to C(R). Column vectors r1, r2, and r4 are linearly
independent (they are standard unit vectors). Therefore, a basis for C(A) is

{a1, a2, a4} =

{
1
2
−3
4

 ,


1
−1
2
1

 ,


1
1
−2
1

}

Can you see that C(A) ̸= C(R)?
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form.

Can you see why r3 is a linear combination of r1 and r2? Can you see why r4 is
linearly independent from r1 and r2?
So, r3 and r5 do not contribute to C(R). Column vectors r1, r2, and r4 are linearly
independent (they are standard unit vectors). Therefore, a basis for C(A) is

{a1, a2, a4} =

{
1
2
−3
4
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−1
2
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1
1
−2
1
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Basis

Example

Find a basis for N (A).

Actually, nothing is new here. We are only changing the
vocabulary. We must find the solutions to Ax = 0. Using the reduced row echelon
form

R =


1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0


we get

x =


x1

x2

x3

x4

x5

 =


−s+ t
−2s+ 3t

s
−4t
t

 = s


−1
−2
1
0
0

+ t


1
−3
0
−4
1

 = su+ tv

A basis for N (A) is {u, v}
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Dimension and rank
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Dimension and rank

Dimension and rank

Theorem

Let S be a subspace of Rn. Then, any two basis for S have the same number of
vectors.

Proof.

This is left as homework.

Definition

If S is a subspace of Rn, then the number of vectors in a basis for S is called the
dimension of S, denoted dim(S).
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Dimension and rank

Dimension and rank

Theorem

The row and column spaces of a matrix A have the same dimension.

Proof.

This is left as homework.

Definition

The rank of a matrix A is the dimension of its row and column spaces and is
denoted by r(A).
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Dimension and rank

Dimension and rank

Theorem

For any matrix A,
r(AT ) = r(A)

Proof.

r(AT ) = dim(C(AT ))

= dim(R(A))

= r(A)
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Dimension and rank

Dimension and rank

Definition

The nullity of a matrix A is the dimension of its null space and is denoted by n(A).

In other words, n(A) is the dimension of the solution space of Ax = 0, which
equals the number of free variables in the solution.
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Dimension and rank

Dimension and rank

Theorem (the rank theorem)

If A is an m× n matrix, then

r(A) + n(A) = n

Proof.

Let R be the reduced row echelon form of A and let r(A) = r. Then, R has r
leading 1s. So, there are r dependent variables and n− r free variables in the
solution set of Ax = 0. Since dim(n(A)) = n− r,

r(A) + n(A) = r + (n− r)

= n
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Dimension and rank

Example

Find the nullity of :

M =


2 3
1 5
4 7
3 6



Since the two columns of M are clearly linearly independent, r(M) = 2. Thus, by
the rank theorem,

n(M) = 2− r(M) = 2− 2 = 0
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Dimension and rank

Example

Find the nullity of :

N =

2 1 −2 −1
4 4 −3 1
2 7 1 8



There is no obvious dependence among the rows or columns of N , so we apply
row operations to reduce it to 2 1 −2 −1

0 2 1 3
0 0 0 0


We have reduced the matrix far enough (we do not need reduced row echelon
form here, since we are not looking for a basis for the null space). We see that
there are only two nonzero rows, so r(N) = 2. Hence,

n(N) = 4− r(N) = 4− 2 = 2

(CONAHCYT INAOE) Linear algebra July 9 2024 38 / 49



Dimension and rank

Example

Find the nullity of :

N =

2 1 −2 −1
4 4 −3 1
2 7 1 8


There is no obvious dependence among the rows or columns of N , so we apply
row operations to reduce it to 2 1 −2 −1

0 2 1 3
0 0 0 0


We have reduced the matrix far enough (we do not need reduced row echelon
form here, since we are not looking for a basis for the null space). We see that
there are only two nonzero rows, so r(N) = 2. Hence,

n(N) = 4− r(N) = 4− 2 = 2

(CONAHCYT INAOE) Linear algebra July 9 2024 38 / 49



Dimension and rank

The fundamental theorem of invertible matrices (version 2)

Theorem

Let A be an n× n matrix. The following statements are equivalent

A is nonsingular.

LS(A, 0) has only the trivial solution.

N (A) has only the zero vector.

LS(A,b) has a unique solution for every b ∈ Rn.

A is invertible.

Ax = b has a unique solution for every b ∈ Rn.

Ax = 0 has only the trivial solution.

The reduced row-echelon form of A is In.

A is a product of elementary matrices.
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Dimension and rank

The fundamental theorem of invertible matrices (version 2)

Theorem

More equivalent statements

r(A) = n.

n(A) = 0.

The column vectors of A are linearly independent.

The column vectors of A span Rn, i.e., C(A) = Rn.

The column vectors of A are a basis for Rn.

The row vectors of A are linearly independent.

The row vectors of A span Rn, i.e., R(A) = Rn.

The row vectors of A are a basis for Rn.
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Ending

Ending
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Ending

Summary

A subspace (of a vector space) contains the zero vector and is closed under
linear combinations.

The row space of Am×n, R(A), is the subspace of Rn spanned by the rows
of A.

The column space of Am×n, C(A), is the subspace of Rm spanned by the
columns of A.

The null space of Am×n, N (A), is a subspace of Rn.
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Ending

A basis for a subset S of Rn is a set of vectors in S that spans S and is
linearly independent.

If S is a subspace of Rn, then the number of vectors in a basis for S is called
the dimension of S, denoted by dim(S).

For any matrix A, R(A) = C(A).

r(A) + n(A) = n, where r(A) is the rank of the matrix and n(A) is its
nullity.
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Ending

Homework

Let S be the collection of vectors that satisfy the given property. Is S a
subspace of R2?

1 x = 0.
2 y = 2x.
3 x ≥ 0, y ≥ 0.
4 xy ≥ 0.

Let S be the collection of vectors that satisfy the given property. Is S a
subspace of R3?

1 x = y = z.
2 z = 2x, y = 0.
3 x− y + z = 1.
4 |x− y| = |y − z|.
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Ending

Homework

Prove the theorems from slides 32 and 33.

Is b in C(A)? Is w in R(A)?

1 A =

[
1 0 −1
1 1 1

]
, b =

[
3
2

]
, w =

[
−1 1 1

]
.

2 A =

1 1 −3
0 2 1
1 −1 4

, b =

11
0

, w =
[
2 4 −5

]
.
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Ending

Homework

Find a basis for R(A), C(A), and N (A)?

1 A =

[
1 0 −1
1 1 1

]
.

2 A =

1 1 −3
0 2 1
1 −1 −4

.
3 A =

 2 −4 0 2 1
−1 2 1 2 3
1 −2 1 4 4

.
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Ending

Homework

Is


1
1
1
0

,

1
1
0
1

,

1
0
1
1

,

0
1
1
1

 a basis for R4?

Is


1
−1
0
0

,


0
1
0
−1

,


0
0
−1
1

,

−1
0
1
0

 a basis for R4?
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Ending

Next topics

Eigenvalues and eigenvectors?
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Ending

Thank you
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